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ABSTRACT 
Some implications of estimating maximum sustainable yield rate (MSYR) from the recovery trajectories of competing populations are 
examined by simulation. Estimating MSYR from depleted populations makes strong assumptions about each population being isolated, 
stationary and recurrent. Possible competition undermines the assumption that populations are isolated. A model of intra-specific 
competition based on a multi-species version of the Pella-Tomlinson model is used to derive yield curves under various conditions. In this 
type of model the MSYR of interest to management is less than that applying to either species alone. Fitting a single species model to a 
recovery trajectory gives an estimate of the latter. The implications of these properties for the revision of the RMP are briefly discussed. 
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INTRODUCTION 
Estimating Maximum Sustainable Yield Rate (MSYR) by fitting a population model to a recovery trajectory 

is in essence a prediction about the future behaviour of a population, conditioned on current circumstances. If 
the future circumstances differ from the current ones then the prediction may not be reliable. Empirical 
predictions are only highly reliable for systems that are isolated, stationary (that is, have time invariant 
properties) and recurrent (Popper, 1963). These correspond to the assumptions of a single species population 
model. However, populations in natural systems do not generally satisfy any of these three conditions. One 
possible process that may lead to a failure of the single species assumption of isolation is the effects of inter-
specific competition. 

A modified form of the much abused multi-species logistic model or Lotka-Volterra (LV) competition 
model (Lotka, 1932) is used here to illustrate some potential pitfalls in estimating MSYR using the in-principle 
approach currently being applied by the Working Group on MSYR (IWC, 2009). The modification here is to 
depart from the logistic form of the model so that the single species yield curves are given by Pella-Tomlinson 
models. Of course this class of competition model is a gross and unreliable simplification of possible forms of 
inter-specific competition. However, the purpose here is to gain some insight into the possible effects of 
competition on the estimation of MSYR. Whether there is any general solution to these problems will require 
much deeper consideration. Inter-specific competition models involving more than two species can have more 
complex properties than the two-species modified LV model used here (Strobeck, 1973, Huisman and Weissing, 
2001).  

Cooke (2009a) presented the standard general theory of equilibria in the multi-species logistic model and 
demonstrated that MSYR depends on the pattern of exploitation. For a multi-species logistic model MSYR is 
0.5r for each population alone if the others were eliminated (where r is a vector of maximum rates of increase 
for the set of competing populations). He also showed that the exploitation rate that maximised the yield for the 
joint set of populations was less than 0.5r and often substantially so. Cooke did not explore the implications of 
these observations on the estimation of MSYR from fitting a single species model to recovering populations, nor 
the sequential consequences of using those estimates for managing exploitation of populations that recover at 
different rates. The 2007 MSYR Workshop (IWC, 2009) did not take much account of the analysis apart from 
noting that it is important to be clear which MSYR is being referred to. The implications of Cooke’s 
demonstration do not appear to have been given much consideration by the Scientific Committee. Cooke’s 
rather mathematical demonstration may have contributed to the lack of appreciation of the potential issues.  

Given that the empirical estimation of the effects of competition is of immense practical difficulty (Peters, 
1992), a general solution that accounts for the effects of competition on estimates of MSYR may not be 
practically achievable. A cursory scan of the literature suggests that active research in this area is currently at 
low levels. 

There is of course an even more gross simplification of the likely behaviour of real populations, and that is 
the single-species population model. The question is whether such a gross simplification can lead to robust 
estimates of parameters of interest, particularly if they are not constants as assumed in a single-species model.  
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The modified LV model for two competing populations P1 and P2 can be written in the form of difference 
equations as: 
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where N.,t is the abundance of populations (P1 or P2) in year t  
 r. is the maximum rate of a population’s increase (when both populations are of negligible size) 
 K. is the carrying capacities of each population in the absence of the other 
 α.. are competition coefficients capturing the effect of one population on the other 
 H.,t are exploitation rates, that is, proportions of the population taken in year t 
 
The two populations are set up with the parameters given in Table 1.  
 

Table 1. Parameters used in the competition model 
 
Parameter Population 1 Population 2 
K 5000 10000 
r 0.08 0.04 
z 2.39 2.39 
α r1/15000 r2/20000 
Single species MSYL 3000 6000 
Single species MSYR 0.0564 0.0282 

 
The equations have an equilibrium solution when: 
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The terms on either side of the equations are isoclines where the rate of increase of a population is zero. 

Since these are equilibrium solutions the t subscripts can be dropped. An equilibrium solution for the two 
equations occurs at population abundances where two isoclines intersect. The only solutions of interest in the 
illustrations in this paper are where the populations can coexist in stable equilibrium.  

Fig. 1 gives some examples of the zero isoclines showing the equilibria for several exploitation rates. The 
isoclines 1 and 2 in Fig 1 both have H. set at zero. The unexploited equilibrium for the two populations occurs at 
N1 = 3344 and N2 = 9263, which will be referred to as K*

1 and K*
2 respectively. Isocline 3 has P1 exploited at a 

rate of 0.0267, which results in the isoclines intercepting at N1 = 0 and N2 = K2. This means, in the absence of 
exploitation on P2, that an exploitation rate > 0.0267 on P1 will lead to its collapse despite the single species 
MSYR being more than twice that value. Isoclines 4 and 5 correspond to both populations being exploited 
simultaneously so that the resultant equilibrium occurs at N1 = 2007 and N2 = 5558, which are 60% of their 
respective K* values. 

In this class of model, the yield curves for either population depend on the abundance of the competing 
population. The equilibrium yields for either population are a 3 dimensional surface, and a yield curve is a 
section through that surface for a specified locus of abundances for the competing populations. Fig. 2 shows 
yield curves for P1 and P2 obtained under several conditions. The top curve is the single-species yield curve for 
both P1 and P2 (abundance is given as a fraction of their respective K values). These are the curves that apply 
for either species in the absence of the other. In this example, the maximum sustainable yield (MSY) has the 
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same numerical value for both populations because P1 has twice the MSY rate of P2, but half the carrying 
capacity (K). For these curves the MSYR values are equal to their single species values of 0.0564 and 0.0282 for 
P1 and P2 respectively. 

The second curve down in Fig. 2 is the yield curve for P2 when P1 is held at its nominal MSYL of 60% of 
K*

1. For this curve, not surprisingly MSY is less in the presence of the competitor, but MSYR is 0.0262, also 
less than its single species value. This curve and the second from the bottom are the two that are relevant if both 
species were to be managed to maintain their abundances relative to their joint equilibrium abundance (K*). 
These MSYR values will be designated as MSYR*. The third curve from the top is for P2 where P1 is not 
exploited, and hence P1 increases in abundance above K*

1. Obviously, MSY will be numerically smaller, but 
MSYR is also less at 0.0204. The second curve from the bottom is the yield curve for P1 with P2 maintained at 
60% of K*

2. For this curve the value of MSYR* is 0.0413. The lowest curve is for P1 exploited while P2 not 
unexploited; in this case the MSYR is 0.0197.  For either population, both MSY and MSYR depend on the state 
of the competing population. In this model, the MSYR applying to either population in the absence of the other 
is greater than MSYRs attained when both populations exist. 

To begin to explore the properties of fitting a single species model to recovery trajectories of competing 
populations, both competing populations are depleted to a few percent of their K* values (3.5% of K*

1 and 1.1% 
of K*

2) and to approximately the same abundance. Without further exploitation the populations recover with the 
trajectories shown in Fig. 3. P1 overshoots K*

1 because P2 recovers at a slower rate. P1 eventually declines 
towards K*

1 as P2 becomes more abundant. The superabundance of P1 does not appear to have much effect on 
the recovery of P2. There are several instances where populations appear to recover above K, hence making 
them difficult to describe using single-species deterministic models (Cooke, 2009b). The effects of competition 
could be a contributing factor.  

The method that fits a single species population model to the recovery trajectories is implemented here 
deterministically by fitting a Pella-Tomlinson single species model, with MSYL = 0.6K, to the recovery 
trajectories with 20 years of precise and unbiased absolute abundance data. Fig. 4 shows the “true” and fitted 
population trajectories. The estimates from the fitted single species models are given in Table 2. The recovery 
trajectories when both populations are substantially depleted are approximate estimates of r.. However, the 
single-species estimates of MSYR derived from r. are overestimates of MSYR*. There is some bias in the 
estimates of K* because the downward trajectory of each population is affected by the changes in productivity 
arising from the changes in abundance of the competing population. These affects are absent in the fitted single-
species model, so that estimates of K* are biased down, although more substantially for P1.  

Eventually these inconsistencies will lead to obvious departures between the recovering abundance and a 
single species model, particularly in the case of P1 when it begins to demonstrate recovery to above K1. 

 
Table 2. Estimated parameters of single species logistic models fitted to the recovery trajectories of the competing populations from a single 
deterministic trial. 
 
Population True K* Estimated K True r Estimated r Estimated 

MSYR 
Estimated
MSYR/MSYR* 

P1 3344 2809 0.080 0.0796 0.0561 1.36 
P2 9263 9097 0.040 0.0392 0.0282 1.08 

 
Fig. 5 shows the consequences of exploiting the two populations at the estimated MSYRs beginning in the 

year the populations each exceed 60% of their respective K* levels. If the single-species model was accurate, P1 
should stabilise at around this abundance level. However, P1 continues to increase until the recovery of P2 is 
further advanced, after which P1 begins to decline because the single-species estimate of MSYR is an 
overestimate of MSYR*, which is the rate required to stabilise P1 at 0.6K*

1 (MSYR* = 0.0413) when P2 is at 
0.6K*

2. By the time P2 reaches 60% of K*
2 the estimate of its single species MSYR will not stabilise the 

population despite being an over-estimate; P2 continues to increase because of the declining trend of P1. The 
trajectories continue to diverge.  

If we consider a time horizon of about 100 years, the consequences of biased estimates of MSYR do not 
seem to have particularly serious consequences, and so it might be argued that the effects of competition on the 
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estimates have been relatively harmless in this case (and under the assumption that other improvements is 
management will occur in the interim).  

However, the general revision of MSYRs as contemplated by the Scientific Committee would have the effect 
of applying the estimates in contexts other than those in which they were estimated. Suppose we were to apply 
those estimates to similar competing populations elsewhere, but neither of which have been substantially 
depleted. This scenario is shown in Fig. 6, where both populations were already at 0.6K*, but both now would 
decline because the single species MSYR estimates are overestimates of MSYR*. 

Whether either of these scenarios are serious problems for the RMP depends on the adaptive capacity of the 
management system to accommodate incorrect assumptions about MSYR.  

DISCUSSION 
Our prospect of reliably predicting MSYR even at the modest level of a distribution of MSYRs, assuming 

that such a thing exists, is inevitably low for natural systems because they are not isolated, stationary and 
recurrent. If the practical context available for estimating MSYR is from substantially depleted populations, this 
note indicates one class of mechanism that should make us wary about extrapolating those estimates to contexts 
where populations are not depleted. In the case of the simple competition model used here, MSYR is not 
necessarily a constant but changes over time with the changing abundance of the competing populations. Apart 
from inter-specific competition, competition of fisheries with marine mammals will affect apparent yield curves, 
as will the effects of climate change and ocean acidification that may lead to failures of the assumption that the 
systems are stationary.  

The important question is whether the adaptive properties of the RMP are sufficient in the light of intractable 
uncertainties. When it is said that the RMP is “too conservative”, the real issue is whether it has sufficient 
adaptive capacity to respond fully when yields are higher in the expected range. If the procedure is made “less 
conservative”, the question is symmetric; would the revised procedure have sufficient adaptive capacity to 
respond fully when yields are at the lower end of the range. The primary problem is not the range of MSYRs; 
the problem is that adaptive capacity of the RMP is low and incomplete. However, this is a consequence of the 
rate of accumulation of information about population dynamics being limited because of imprecise abundance 
estimation, low acceptable risks of depletion and the objective of limiting fluctuations in catch limits to make 
them more predictable for the industry. The responsiveness of the procedure has to be low because of the 
constraints under which it operates. Making it “less conservative” may mean that it is not always conservative 
enough. 

In principle, procedures used to modify the RMP are also part of the management system. The RMP 
development process demonstrated that the properties of methods depend on the context in which they are used 
and that they should be evaluated in situ rather than ex situ (de la Mare, 1986). Accordingly, if we are to use 
data, models and meta-analyses to modify the RMP we should also evaluate the consequences of using those 
methods to determine whether the whole management cycle retains robust management properties. 
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Fig. 1. Isoclines showing where the rate of change of population size is zero for the competing populations for some different rates (H) of 
exploitation. 

 

 

Fig. 2. Yield curves for the two populations:  curve 1; either P1 and P2 without the competition (the single species yield curves), curve 2; P2 
with P1 maintained at 60% of its unexploited equilibrium abundance, curve 3; P2 without exploitation of P1; curve 4; P1 with P2 at 60% of 
its unexploited equilibrium, curve 5; P1 without exploitation of P2, bottom. Abundance is shown as a fraction of K1 or K2 as appropriate. 
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Fig. 3. Recovery of the two competing populations after simultaneous and substantial depletion and in the absence of further exploitation. 

 

Fig. 4. “True” population trajectories generated from a model of two competing populations, both similarly depleted by simultaneous 
exploitation for 50 years. Also shown are two trajectories from fitting a single species model to the true abundance values from 
monitoring the recoveries over a 20 year period from year 56 to 76.   
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Fig. 5. Effects of applying an exploitation rate at the estimated values of MSYR to the two populations, starting when each was estimated 
to be recovered to more than 60% of their respective K* values. 

 

Fig. 6. Effect of applying the same MSYR estimates to other populations that were both at 60% of their unexploited equilibrium 
abundances previously. 
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