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ABSTRACT   

In all natural populations, random linkage disequilibrium (LD; non-random associations of alleles at 
different gene loci) occurs, with magnitude inversely proportional to effective population size, Ne.  By 
measuring LD from a population sample, one can estimate Ne and (if the ratio Ne /N is known or can be 
estimated) the census population size, N.  In contrast to the more commonly used temporal method, the 
LD method requires only a single sample.  However, the LD method has seen relatively few 
applications, and its performance has not been evaluated with highly variable genetic markers.  I use 
simulated data to evaluate bias and precision of the LD method as a function true Ne, the number of 
individuals sampled, and the number and frequencies of alleles included in the analysis.  Results show 
that using a typical number of microsatellite markers, the LD method can estimate Ne very precisely in 
small populations and can provide useful information about the lower bound of population size for large 
populations.  When true population size is large (Ne > 1000), estimates of effective size are largely 
unbiased if sample sizes are large enough (100 or more individuals), but precision is low, particularly 
for the upper bound of Ne.  Restricting the analyses to alleles with frequency ≥ 0.02 appears to provide a 
good balance between maximizing precision and minimizing bias. 

 

INTRODUCTION 

Population size can be difficult to estimate in many natural populations, including cetaceans.  This difficulty has 
motivated efforts to explore genetic methods for estimating abundance.  Most genetic methods provide direct 
information not about the census population size (N) but rather the effective population size (Ne).  Generally, Ne 
< N in natural populations, and if the ratio Ne /N is known or can be estimated, a genetic estimate of Ne can 
provide insights into population abundance as well.  Because Ne directly or indirectly determines the rates of 
change in response to the evolutionary processes genetic drift, migration, selection, and mutation, there is also 
considerable interest in estimates of Ne for their own sake.  This paper evaluates the practical usefulness of one 
genetic method for estimating Ne (and hence N), based on linkage disequilibrium (LD; non-random associations 
of alleles at different gene loci).     

The LD method has some advantages over other methods for estimating Ne.  First, unlike methods that estimate 
long-term effective size (e.g., Roman and Palumbi 2003), the LD method does not require equilibrium 
assumptions and provides an estimate of contemporary Ne, which often is of more interest for management 
applications.  Second, unlike the more commonly used temporal method (Nei and Tajima 1981; Waples 1989; 
Wang 2001), which requires at least two samples separated in time, the LD method requires only a single 
sample.  Third, because the number of allelic combinations the estimate is based upon increases with the square 
of the numbers of loci and alleles per locus, precision of the method (in theory at least) increases quickly with 
addition of more and more genetic markers.   However, the LD method has seen relatively few practical 
applications, and its performance has not been evaluated with highly polymorphic genetic markers (such as 
microsatellites) that are commonly used today. 
 
In this paper I examine precision and bias of the LD method and how these indices vary as a function of sample 
size, effective population size, and the number and frequencies of alleles used.  I also consider some questions of 
more direct relevance to management, such as, “If Ne is small, how often does the method mistakenly estimate a 
large Ne?” and “If Ne is large, how often does the method mistakenly estimate a small Ne?” 
 
METHODS 
 
Genotypic data were generated for populations of known effective size using the software EASYPOP (Balloux 
2001).  The populations had discrete generations, equal sex ratio, and mated randomly.  One thousand replicate 
populations were generated for each population size considered (N = 100, 500, 1000, 5000).  Each simulated 
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individual had data for L = 20 independent gene loci which had a mutational model approximating that of 
microsatellites (mutation rate μ = 5x10
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-4; k-allele model (KAM) with 10 possible allelic states).  Each simulation 
was initiated with maximal diversity (initial genotypes randomly drawn from all possible allelic states) and run 
for successive generations until the mean within-population heterozygosity (He) reached 0.8 (comparable to 
levels found in many studies of natural populations using microsatellites).  Simulations with N = 5000 used a 
lower mutation rate (μ = 5x10-5) because μ = 5x10-4 led to mutation-drift equilibrium values of He that were 
larger than 0.8; in addition, because of memory and time constraints, simulations with N = 5000 were evaluated 
over 500 rather than 1000 replicate populations. After the He = 0.8 criterion was met, samples of S = 200, 100, or 
50 individuals were taken from the final generation and subjected to genetic analysis.  [For simulations with N = 
100, the sample size of S = 200 was skipped.]  Since the populations were “ideal,” effective size and census size 
were the same (actually, for otherwise ideal populations in species with separate sexes, Ne ≈ N + 0.5; Balloux 
2004). 
 
Effective population size was estimated from the genetic data via the linkage disequilibrium method (Hill 1981), 
which depends on random associations of alleles at different gene loci that occur in all finite populations.  The 
squared correlation of allele frequencies at pairs of loci ( 2r̂71 ) was calculated using the composite Burrows 
method (Weir 1996).  For each sample, an overall mean 2r̂ 2r̂72 
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 was computed as the weighted average  over the 
L(L-1)/2 pairwise comparisons among loci.  With L = 20 loci initially segregating and a high mutation rate, 
virtually every replicate had 20 polymorphic loci at the time of sampling, yielding 20x19/2 = 190 pairwise 
comparisons of loci.  The weights for each locus pair were the relative number of independent alleles used in the 
comparison.  A locus with K alleles has the equivalent of K-1 independent alleles.  For two loci, with K1 and K2 
alleles, respectively, there are the equivalent of (K1 –1)(K2 -1) (presumably) independent allelic comparisons.  
For each locus pair, therefore, I computed a mean 2r̂  as the average over all K1K2 allelic comparisons and gave 
that 

78 
2r̂  a relative weight equal to (K1 –1)(K2 -1).  The total degrees of freedom associated with the overall 

weighted mean 
79 

2r̂  was computed as n = Σ(Ki –1)(Kj -1), with the sum over all pairwise comparisons of loci.  To 
assess the possible biases from use of numerous low frequency alleles (as commonly occur with microsatellites), 
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2r̂ was computed separately after excluding alleles with frequencies below the following criteria: Critical P = 
0.1; 0.05; 0.02; 0.01. 
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Because Hill’s (1981) method was recently shown to be biased  (England et al. 2006), the empirical bias 
correction developed by Waples (2006; Table 2, random mating model) was used to estimate effective size from 
the overall mean 2r̂ .  Parametric confidence intervals to  were computed using Equation 12 in Waples 

(2006) assuming n degrees of freedom.  Accuracy was evaluated by using the overall mean 
eN̂86 

2r̂87 
88 

 to compute a 
mean  for each parameter set and comparing this with the true Ne; bias in  was computed as  – true Ne 

and expressed as the ratio .  Precision was measured by the coefficient of variation (CV) of 
eN̂ eN̂ eN̂

ee NN /ˆ 2r̂89 

90 
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 and by 

confidence intervals (CIs) for .  A metric that measures both accuracy and precision (mean squared error 

(MSE)  = mean squared deviation of the point estimates  from the true value) was computed as MSE( ) = 

Var( ) + Bias( )2).   Because can be infinite or negative (which occurs if the empirical 

eN̂

eN̂ eN̂

eN̂ eN̂ eN̂ 2r̂92 
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 is equal to or 

less than, respectively, the value expected from sampling error alone), a limit of 10x true Ne was imposed on .  
A similar approach is used with maximum likelihood methods for estimating Ne from genetic data, which require 
that an upper bound for  be stipulated (Wang 2005). 

eN̂

eN̂

  

RESULTS 

With four different population sizes, three different sample sizes (two only for N = 100) and four different 
critical P values, results were obtained for 44 different scenarios for each metric evaluated.  These results are 
arranged below by population size and plotted as a function of sample size and critical P value.  The results are 
further organized into three categories:  metrics that measure bias of ; those that measure precision (CV of eN̂

2r̂ ; CIs for ); and a metric that measures both accuracy and precision (MSE( )) . eN̂ eN̂102 
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Two patterns are noteworthy with respect to the ratio , which is shown in the top panel of Figures 1-4.  
First, estimates using Critical P = 0.1 and 0.05 consistently produced estimates of Ne with little or no bias, 
whereas with the less stringent Critical P = 0.02 or 0.01 low frequency alleles resulted in an upward bias in .  
Second, there is an interaction effect between N, S, and Critical P with respect to bias.  As alleles of frequency < 
0.05 are included, bias increases faster for smaller samples.  This interaction effect is most clearly seen with 
large populations (N = 5000).  With large samples (S = 200), has only a minor upward bias (< 7%) for 

Critical P = 0.05 and only slightly more for Critical P = 0.02 or 0.01; in contrast, with S = 50 has 13% 
upward bias for Critical P = 0.05, 59% bias for Critical P = 0.02, and almost 300% upward bias when alleles at 
frequency as low as 0.01 are included in the analysis (Figure 4, top panel). 

ee NN /ˆ
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eN̂

eN̂

Precision 
2r̂117 
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Precision is directly related to the amount of information available for computing .  Table 1 shows the mean 
degrees of freedom (n) associated with each parameter set.  Relatively little variation in n occurred among 
replicates within a parameter set (data not shown).  In addition, for a given N and Critical P, sample size had 
little effect on mean n, except for Critical P = 0.01, where larger samples had slightly more alleles that met the 
criterion (Table 1).  In contrast, n increased sharply as lower frequency alleles were admitted into the 
computations.  For example, n was more than twice as high for Critical P = 0.05 than for 0.1 and was about three 
times as high for Critical P = 0.02.   For S = 50 use of Critical P = 0.01 provided little additional information, but 
for larger samples (which contain more rare alleles) use of Critical P = 0.01 led to further (albeit relatively 
modest) increases in n (Table 1).  

The direct effects on precision when lower frequency alleles are used are seen in the second panel in Figures 1-4.  
For all values of N, the CV of 2r̂ is highest for Critical P = 0.1, drops by about 40-50% for Critical P = 0.05, and 
declines further (but more modestly) for Critical P = 0.02 and 0.01.  This effect is essentially independent of 
sample size. 
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Parametric 95% CIs for the overall  were calculated using the presumed degrees of freedom shown in Table 
1.  To assess their accuracy, these CIs were compared to 2.5% and 97.5% tails of the empirical distribution of 

 estimates across the 1000 (500 in the case of N = 5000) replicates.  In all cases the empirical CIs were 
broader than the parametric CIs, indicating that the latter are slightly optimistic.  Results for N = 500 depicted in 
Figure 5 illustrate this pattern.  For example, with S = 200, overall  was 504.7 (less than 1% upward bias) and 
the parametric 95% CI was (388-716), whereas in the simulations the empirical range was somewhat broader 
(358-833).  This figure also dramatically shows the decline in precision with smaller sample size.  With S = 50, 
the parametric and empirical 95% CIs were (239-∞) and (208-∞), respectively.  Regardless of the Critical P, with 
samples of 50 individuals the LD method could not reliably distinguish a population with true effective size = 
500 from one with an infinite effective size.  As a rough general rule, the empirical CIs could be approximated 
by subtracting 10% from the lower bound of the parametric CI and adding 10% (or a bit more) to the upper 
bound. 

eN̂

eN̂

eN̂

Another way to evaluate precision in a form that is relevant to management considerations is to ask, How often 
do we obtain an estimate of Ne that is substantially larger (or smaller) than the true value?  Two pairs of criteria 
were considered:  values that were twice (or ten times) as large as true Ne, and values that were one-half (or one-
tenth) the true Ne.  Table 2 makes apparent the asymmetry in the power of the LD method: small effective size 
can be detected much more reliably than can large Ne.  For example, with N = 100 and S = 100, in not a single 
replicate did  exceed 2Ne or fall below 0.5Ne (Table 2).  For Critical P = 0.05 or lower, all of the estimates 

fell within the range  = 69-160 (data not shown).  Even with small samples (S = 50), no estimates were 10x 
(or 1/10th) the true value and only a small fraction were twice (or half) as large as the true Ne (Table 2).   

eN̂

eN̂

As N increases, the fraction of  estimates that are outside these bounds increases rapidly, and the magnitude 
of the increase depends heavily on S and Critical P.  Furthermore, more estimates exceed the upper bound than 
the lower bound.  With N = 1000, S = 200, none of the  estimates were less than 0.5Ne for Critical P = 0.01 
and only 2.6% were lower than 0.5Ne for Critical P = 0.1.  With small sample sizes (S = 50), these numbers 
jumped to 11.8% and 26.2%, respectively (Table 2).  Still, none of the estimates under any scenario with N = 
1000 were as small as 0.1Ne.  Upper bounds on  are much less reliable.  With N = 1000, S = 50, a quarter to a 
third of the estimates were more than ten times the true Ne, depending on the Critical P.  Even with S = 200, 

eN̂

eN̂

eN̂
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4.8% of the estimates were > 2Ne for Critical P = 0.02 or 0.01 and 12.6% of the estimates were > 2Ne for Critical 
P = 0.1 (Table 2).  With N = 5000, a large fraction (>24%) of the  estimates exceeded 10Ne even with large 
samples, regardless of Critical P.  In general, the fraction of estimates that exceeded a given range around the 
true Ne was negatively correlated with S and positively correlated with N and Critical P. 
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eN̂

Mean squared error 

To facilitate comparisons across multiple values of N and S, for each parameter set mean squared error (MSE) 
was scaled to the minimum found for any of the four Critical P values.  Results (presented in the bottom panel of 
Figures 1-4) indicate that MSE was highest for Critical P = 0.1 and lowest for Critical P = 0.02 and 0.01.  The 
exception was N = 100, in which case the lowest MSE occurred with Critical P = 0.05.  The sensitivity of scaled 
MSE to the frequencies of alleles used varied in a complex way with sample size.  Given the asymmetry in the 
distribution of , the primary factor determining the MSE was the fraction of estimates with very high values 
(constrained here to be no larger than 10Ne).  Conditions that led to a large difference in scaled MSE can be 
identified from the data in Table 2.  For example, with N = 500 and S = 200, none of the  was as large as 10Ne 

for Critical P = 0.01, while  = 10Ne occurred in 2.9% of the trials with Critical P = 0.1.  As a consequence, 
scaled MSE was much higher for the more restrictive Critical P (Figure 2, bottom panel).  In contrast, with S = 
50, in a reasonable fraction (9-17%) of the trials  = 10Ne for all Critical P; although each of these scenarios 
led to a much higher absolute MSE than was found with S = 200, the relative difference as a function of Critical 
P was not as large with the smaller sample size. 

eN̂

eN̂

eN̂

eN̂

 

DISCUSSION 

The LD method provides an estimate of contemporary effective size, and the resulting  can be interpreted as 
the effective number of breeders that produced the sample under consideration (Waples 2005).  England et al. 
(2006) showed that estimates of Ne from the standard LD method are biased downwards if S is small relative to 
Ne.  This bias arises because the expectation of 

eN̂

2r̂  used by Hill (1981) ignored second order terms in S and Ne, 
and these terms become important in some cases (Waples 2006).  The empirical correction used here to adjust for 
this bias was based on a wide range of sample and effective sizes (S = 10 to 200; Ne = 10 to 500; Waples 2006) 
but did not consider very large populations, such as might occur with some cetaceans.  Results presented here 
show that the adjusted method can lead to essentially unbiased estimates of Ne even for populations as large as Ne 
= 5000.  However, certain combinations of sample size, true Ne, and Critical P produce biased estimates.  In 
general,  increases as alleles with lower frequency are included in the analysis, and bias is minimized by 
using Critical P = 0.05 or 0.02 (Figure 1-4, top panel).  In most of the situations that lead to biased estimates the 
bias is relatively small (< 10-20%), which is modest compared to various other sources of uncertainty associated 
with estimating population size.  However, in some scenarios the bias is more pronounced (large N, small S, 
Critical P = 0.01).  Large samples (S = 200) had little bias under all scenarios considered. 
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eN̂

Precision of the LD method with highly polymorphic markers has not previously been evaluated.  The pairwise 
comparisons of loci are not entirely independent, so treating them as if they are leads to a somewhat optimistic 
view of precision (Waples 2006).  However, this effect is relatively modest.  A larger uncertainty was how 
precision would increase as a function of the number of alleles segregating at each locus.  In these analyses, a 
pair of loci with K1 and K2 alleles was considered to have the equivalent of (K1 –1)(K2 -1) independent allelic 
comparisons.  The comparison of theoretical and empirical CIs (Figure 5) shows that this approximation is not 
far off.  The theoretical CIs based on the assumed numbers of independent alleles and loci are consistently too 
narrow, but the disparity is not large.  Expanding the theoretical CIs by about 10% in each direction appears to 
be reasonable as a rough approximation to allow use of this method until more thorough evaluations can be 
made.  Bootstrapping 2r̂200 
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208 

 values across loci and/or alleles within loci might prove to be a viable means of 
generating confidence bounds for  for a particular dataset. eN̂

The MSE analyses are useful because they combine information about both precision and bias.  Precision always 
increases with lower Critical P (which allows a larger number of alleles to be used; Table 1 and middle panels in 
Figures 1-4), but in many cases bias increases at the same time.  Critical P = 0.01 led to the lowest MSE for N = 
500-5000, whereas MSE was lowest for Critical P = 0.05 with N = 100.  MSE has some limitations as a metric.  
Because of the asymmetry in the ability of genetic methods to detect Ne (much higher precision occurs when Ne 
is small), MSE is dominated by the (sometimes few) estimates that result in large .  If underestimates are 
more of a management concern than overestimates, then MSE would not be the best performance measure.  

eN̂
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Collectively, the results lead to the following conclusions regarding practical usefulness of the LD method. 

1. The method can lead to very precise estimates for small populations (e.g., with S = true Ne = 100, none of 
the estimates exceeded 2Ne or were less than 0.5Ne; Table 2).   

2. As true Ne increases, the upper bound of  becomes increasingly broad.  As a consequence, it is very 
difficult to distinguish a large population (Ne > 1000) from one that is infinitely large.  

eN̂

3. The LD method has more power to establish a lower bound for large populations.  For example, with N = 
5000 and S = 200, none of the estimates was as small as 0.1Ne, and for N = 1000 and S = 200, only 2.6% of 
the estimates were as small as 0.5Ne (Table 2).  Performance was much worse for smaller sample sizes.  

4. Small samples (S = 50) produce reliable estimates of effective size only if Ne is also small.  Since Ne is 
generally unknown, it is risky to estimate Ne based on small samples unless one is confident the sampled 
population is relatively small.  Samples from populations that are believed to be, or potentially could be, 
relatively large should include at least 100 individuals whenever possible. 

5. Critical P = 0.1 is too harsh a criterion; it often leads to bias in  and sacrifices too much precision.  

Critical P = 0.01 leads to the highest precision but also to upward bias in  in most cases.  Use of Critical 
P = 0.02 (using all alleles with frequencies ≥ 0.02) appears to provide a good balance between maximizing 
precision and minimizing bias. 

eN̂

eN̂

In all of the above I considered ideal populations, in which Ne = N.  The ratio Ne /N is generally less than 1 in 
natural populations, and perhaps a great deal less.  The ratio has not been evaluated in detail in cetaceans, but 
Felsenstein (1971) estimated the Ne /N ratio in humans (who like cetaceans have a Type-I survivorship curve) to 
be 0.34.  This agrees well with the mean values Frankham (1995) reported for single-generation Ne /N ratios 
across a wide range of species.  This means that the census size of cetacean populations could probably be two or 
three times as large as the N = Ne values considered here and still result in the same precision in terms of 
estimating Ne.  Departures from an ideal population that cause the Ne /N ratio to be less than one do not by 
themselves bias the estimate of Ne based on the LD method (Waples 2006). 

All of the simulations used 20 “microsatellite-like” gene loci, which is at or near the upper limit of what is 
typically used in studies of natural populations.  However, the analyses with more restrictive Critical P excluded 
large numbers of alleles, and results for these analyses provide some indication of the precision that can be 
expected from use of fewer gene loci.  For example, if every locus has 10 alleles, each locus pair has the 
equivalent of 9x9 = 81 independent allelic comparisons.  With only 10 loci, there are 10x9/2 = 45 pairwise 
comparisons of loci, leading to a total n = 81x45 = 3645.  This is comparable to the number of alleles used in 
analyses using Critical P = 0.1 (Table 1).  Many microsatellite loci have more than 10 alleles, which can at least 
partially compensate for use of fewer loci. 

Like other genetic methods for estimating Ne, the LD method is based on numerous assumptions (random 
sampling and random mating; no immigration; no selection) that are likely to be violated in natural populations.  
The consequences of violating these assumptions remain to be evaluated in detail, but a discussion of these 
factors can be found in Waples (2006).  If population size fluctuates, the LD method provides an estimate that is 
most strongly influenced by Ne in the parental generation (Waples 2005).  Bottlenecks can be detected quickly, 
but if a population expands rapidly from a bottleneck the residual LD from the bottleneck could downward bias 
the estimate of Ne for a few generations.  Cetacean populations are age-structured, and the consequences for 
estimates of Ne of sampling from age-structured populations remains to be evaluated. 
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Table 1.  Means (across all replicates) of the presumed number of degrees of freedom (n) associated with each 
estimate of Ne. 280 

281 
282 

    Critical P 
   ------------------------------------------------------- 
N S  0.1 0.05 0.02 0.01 283 

284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 

       
100 50  3309 6674 8636 8849 
 100  3219 6686 8998 9400 
       
500 50  3220 6623 8904 9229 
 100  3127 6650 9297 9949 
 200  3077 6650 9510 10306 
       
1000 50  3198 6691 9314 9744 
 100  3104 6695 9716 10594 
 200  3056 6685 9916 11000 
       
5000 50  3293 6845 9248 9556 
 100  3179 6857 9657 10267 
 200  3139 6855 9858 10643 
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Table 2.  Percentage of replicate estimates of Ne that fell outside the indicated lower and upper bounds relative to true Ne = N. 300 

301 
302 

        Critical P        Critical P  
   Lower ------------------------------------------------  Upper ------------------------------------------------ 
  N    S  Bound 0.1 0.05 0.02 0.01  Bound 0.1 0.05 0.02 0.01 303 

304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 

331 

              
100 50  < 0.1N 0.0 0.0 0.0 0.0   10N 0.0 0.0 0.0 0.0 
   < 0.5N 0.1 0.0 0.0 0.0  > 2N 2.5 0.6 1.3 4.6 
 100  < 0.1N 0.0 0.0 0.0 0.0   10N 0.0 0.0 0.0 0.0 
   < 0.5N 0.0 0.0 0.0 0.0  > 2N 0.0 0.0 0.0 0.0 
              
500 50  < 0.1N 0.0 0.0 0.0 0.0   10N 17.2 11.1 10.8 9.4 
   < 0.5N 15.5 7.0 2.4 2.1  > 2N 31.5 26.0 26.7 32.0 
 100  < 0.1N 0.0 0.0 0.0 0.0   10N 3.6 0.9 0.5 0.4 
   < 0.5N 3.5 1.0 0.0 0.0  > 2N 15.8 9.0 6.6 8.4 
 200  < 0.1N 0.0 0.0 0.0 0.0   10N 0.1 0.0 0.0 0.0 
   < 0.5N 0.1 0.0 0.0 0.0  > 2N 2.8 0.7 0.1 0.0 
              
1000 50  < 0.1N 0.0 0.0 0.0 0.0   10N 33.3 28.6 25.2 26.7 
   < 0.5N 26.2 21.6 14.8 11.8  > 2N 42.2 39.4 39.1 42.5 
 100  < 0.1N 0.0 0.0 0.0 0.0   10N 17.0 8.8 5.9 6.2 
   < 0.5N 15.1 5.8 2.2 2.2  > 2N 29.8 22.0 21.1 23.1 
 200  < 0.1N 0.0 0.0 0.0 0.0   10N 2.9 0.7 0.1 0.0 
   < 0.5N 2.6 0.2 0.0 0.0  > 2N 12.6 6.7 4.8 4.8 
              
5000 50  < 0.1N 14.8 6.6 4.0 3.4   10N 47.2 47.4 48.2 49.8 
   < 0.5N 45.2 39.8 37.4 34.6  > 2N 48.8 50.4 51.4 53.6 
 100  < 0.1N 2.8 0.0 0.0 0.0   10N 43.4 40.0 39.4 40.6 
   < 0.5N 41.2 35.2 28.8 28.6  > 2N 47.0 46.0 45.8 48.0 
 200  < 0.1N 0.0 0.0 0.0 0.0   10N 39.4 31.8 27.0 24.4 
   < 0.5N 31.4 24.6 17.8 15.2  > 2N 44.4 40.8 37.0 39.0 
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Figure 1.  Summary of results for simulations with N = 100, plotted as a function of Critical P.  Top panel:  Bias 
in the overal  compared to the true Ne = N.  Dotted line shows unbiased expectation  = 1.0.  

Middle Panel:  Precision of 
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, meaured as CV across 1000 replicate  values computed using data for 20 
gene loci.  Bottom Panel:  mean squared error (MSE) of , scaled so that the lowest MSE = 1.0 eN̂
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Figure 2.  As in Figure 1, but for N = 500. 337 
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Figure 3.  As in Figure 1, but for N = 1000. 340 
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Figure 4.  As in Figure 1, but for N = 5000. 343 

Critical P
0.1 0.05 0.02 0.01

S
ca

le
d 

M
S

E

1.0

1.2

1.4

1.6

1.8

2.0

N
e 

/ N

1

2

3

4

S = 50
S = 100
S = 200

C
V

 r 2

0.00

0.01

0.02

0.03

^
^

N = 5000

344 
345 

346 

 

 11 



Figure 5.  95% confidence intervals (CIs) for  in the LD method as a function of sample size and critical P.  
Parametric CIs (black lines) were calculated from Equation 12 in Waples (2006); empirical CIs (gray lines) 
reflect simulated data.    True Ne = 500 is shown by the horizontal dotted line. 
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