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Abstract 
We are challenged to make the most of sparse information for understanding demography of 
many species, especially those that are long-lived and difficult to observe.  For many odontocete 
populations, only fertility and age-at-death data are feasibly obtainable.  We describe a Bayesian 
approach for using fertilities and two types of age-at-death data (age structure of deaths from all 
mortality sources, and age structure of anthropogenic mortalities) to estimate rate of increase, 
mortality rates, and impacts of anthropogenic mortality on those rates for a population assumed 
to be in a stable age structure.  We used strandings data from 1977-1993 (n = 96) and observer 
bycatch data from 1989-1993 (n = 233) for the Gulf of Maine/Bay of Fundy harbor porpoise 
(Phocoena phocoena) population as a case study.  Our method combines mortality risk functions 
from Siler (1979) and Heligman and Pollard (1980) to estimate parameters describing age-
specific natural and bycatch mortality rates.  Separate functions are simultaneously fit to bycatch 
and strandings data, the latter of which are described as a mixture of natural and bycatch 
mortalities.  Euler equations and an estimate of longevity are used to constrain parameter 
estimates.  We fit models under multiple scenarios intended to correct for possible data bias due 
to unequal probabilities of natural deaths and bycatch deaths occurring in a strandings sample, 
and due to indirect bycatch of calves (i.e.., death following bycatch mortality of mothers) being 
underrepresented in the bycatch sample.  Results from the most plausible scenarios were “model 
averaged” by sampling from all MCMC chains with uniform probability.  The median estimate 
for potential population growth (rnat) was 0.043 (90% CI = 0.003 – 0.113).  The median for 
actual growth (r) was -0.015 (90% CI = -0.141 – 0.072).  The probability of population decline 
due to added fisheries mortality, prior to management to reduce bycatch, was 0.616.  Our 
approach takes into account multiple sources of uncertainty in data and process, and provides 
posterior distributions for a rich set of demographic rate parameters that are unknown for most 
cetaceans.  This method should be easily adaptable to other taxa for which fertility and age-at-
death data are available. 
 
Keywords: age distribution, Atlantic Ocean, conservation, fisheries, gillnets, growth, incidental 
catches, modeling, mortality rate, North America, survivorship 
 
INTRODUCTION 
 
 Demographic statistics – such as population abundance, age-specific mortality and 
fertility rates, and population growth rates – are central to the study of species’ life histories and 
are important for management of protected species.  However, demographic rate estimates are 
lacking for many protected taxa (Heppell et al. 2000, Morris et al. 2002), especially those that are 
long-lived, wide-ranging, and difficult to observe, such as many large marine vertebrates 
(Musick 1999).  Managers of marine populations are thus charged with making decisions based 
on information that may be highly uncertain and incomplete (Taylor et al. 2000, Thompson et al. 
2000, Harwood 2000, Hilborn 2003, Botsford and Parma 2004).  In the face of this challenge, 
new approaches are continually emerging to make inference about animal population dynamics 
and to guide management based on limited information and full characterizations of uncertainty 
(e.g., Taylor et al. 2000, Holmes 2001, Harwood and Stokes 2003, Ellner and Fieberg 2003, 
Tinker et al. 2006, Nicholson and Possingham 2007). 

For example, management of incidental take (bycatch) of marine mammals in US 
fisheries, under 1994 amendments of the Marine Mammal Protection Act (MMPA), is based on 
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estimating a quantity called the Potential Biological Removal (PBR). This is the maximum 
allowable take from a population that still allows it to equilibrate at a level above which 
maximum net productivity occurs, and its calculation depends in part on an estimate of the 
intrinsic population growth rate, rmax (Wade 1998).  The equation for PBR explicitly aims to 
minimize risk that could result from the large degrees of uncertainty inherent to most 
demographic estimates (Wade 1998, Taylor et al. 2000, 2007).   However, there are few 
empirical estimates of rmax with which to calculate PBR, so a default value is typically used.  For 
cetaceans the default is 0.04, and it is assumed that this value is conservative yet appropriate for 
most cetaceans for which no data are available (Wade 1998, Taylor et al. 2000).  Yet potential 
growth rate estimates considerably lower (e.g., 2-3%: Brault and Caswell 1993, Wade 1998, 
Fujiwara and Caswell 2001; Alvarez-Flores and Heide-Jørgensen 2004) and higher than 4% 
(e.g., 6.5% - 14%: Best 1993; Barlow and Clapham 1997, Mizroch et al. 2004) exist, with 
reported rates appearing higher on average for mysticetes than odontocetes.  Thus, the default 
value of 0.04 is unlikely to accurately represent true population growth rates in some cases, 
necessitating information about individual species demographic rates where possible. 
 More generally, knowledge of rmax is important for understanding species ecology and 
conservation under any policy framework, and it is central to population risk assessments (e.g., 
Caswell et al. 1998, Slooten et al. 2000, Burkhart and Slooten 2003, Dans et al. 2003).  In the 
absence of survival rates or abundance trends to enable estimation of population growth, 
modeling efforts have been undertaken to determine plausible values of rmax for several 
odontocete species.  Reilly and Barlow (1986), followed by Woodley and Read (1991) and 
Slooten and Lad (1991), used a Leslie matrix approach to estimate rmax for dolphins and 
porpoises under hypothetical vital rate values assumed to span the reasonable limits for these 
taxa.  Other efforts have relied heavily on the use of “model life tables”, whereby rmax is 
calculated from reproductive information for the case study species in conjunction with 
survivorship schedules of other species considered to have reasonably similar life histories to 
odontocetes (Woodley and Read 1991, Barlow and Boveng 1991, Slooten and Lad 1991, 
Caswell et al. 1998, Dans et al. 2003).  The first approach is useful for identifying plausible 
upper limits for growth rates of odontocete populations but provides no means to assess which 
parameter combinations (and hence which value for rmax) are most likely.  The second approach 
explicitly addresses uncertainty when conducted using Monte Carlo methods (Caswell et al. 
1998, Dans et al. 2003), but inferences from these models are entirely dependent on the 
suitability of model species used and the appropriateness of age rescaling that is often performed 
(e.g., by longevity or age at first reproduction), both of which are unknown.  Neither of these 
approaches provides insight about the actual survivorship schedule or related demographic rates 
(e.g., generation time, reproductive values, etc.) for the species of interest. 

Data to directly estimate odontocete survival rates may be difficult or impossible to 
obtain, but for many species other types of information are often available – namely age 
structured data from carcasses and observations of reproductive schedules.  We describe a 
flexible Bayesian approach for using age data from animals killed in fisheries and stranded on 
beaches, combined with reproductive data, to make inference about cetacean demographic rates 
and impacts of bycatch on population parameters.  Our model is best viewed as an uncertainty 
analysis in that many combinations of demographic processes can predict the observed data 
equally well (Nelson et al. 2004).  Our framework comprehensively explores the set of processes 
that may have generated the observed data and then inference is probabilistically based.  The 
merits of using Bayesian methods to make use of limited and disparate datasets and characterize 
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uncertainty have been reviewed elsewhere (Wade 2000, Harwood and Stokes 2003, Clark 2005), 
and Bayesian approaches have been applied to study odontocete demography and risk 
assessment due to overharvest or bycatch (Kinas 2002, Alvarez-Flores and Heide-Jørgensen 
2004).  Our goal is to provide an analytical framework that is useful for gaining new insight 
about odontocete life histories, for which empirical information is rare.   

We present a case study for the Gulf of Maine/Bay of Fundy (GOF/BOF) population of 
harbor porpoise (Phocoena phocoena), a small odontocete with a long history of fisheries 
bycatch (Read and Gaskin 1988, Read et al. 1993, Trippel et al. 1999).  Concern about high take 
levels prior to the mid 1990s stimulated efforts to understand the impacts of bycatch on this 
population (Woodley and Read 1991, Caswell et al. 1998) and it was proposed for listing under 
the US Endangered Species Act in 1993 (Federal Register 58:3108-3120).  Subsequent 
management to reduce harbor porpoise bycatch has been effective and the GOF/BOF population 
was removed from the candidate species list in 2001 (Federal Register 66:53195-53197).  
However, recent take has been increasing (Waring et al. 2007) and most harbor porpoise 
demographic rates are still unknown.  Our analysis yields the first direct empirical estimates of 
many demographic parameters for this population, and provides quantitative evidence of 
historical impacts of bycatch on these parameters.  Through providing new insight to harbor 
porpoise life history, our results may help with its future management, and our methods should 
be applicable to this or other taxa for which adequately large samples of these data types are 
available or could be collected. 

 
METHODS 
 
Harbor porpoise data 
 Strandings data (n = 96; Fig. 1) used in this analysis are taken from Wenzel (2000), who 
examined stranded porpoises from the coast of Massachusetts from 1977 to 1993.  Bycatch data 
(n = 233; Fig. 1) come from carcasses retrieved by observers working aboard commercial gill net 
vessels in US waters of the Gulf of Maine from 1989 to 1993 (n = 92) and from Canadian waters 
of the Bay of Fundy from 1989 to 1993 (n = 141), obtained through a co-operative program with 
commercial gill net fishermen (Read and Hohn 1995).  Reproductive parameters used in this 
analysis were age-specific estimates (from Read and Hohn 1995) of fertility (number of female 
calves per female), calculated for each age t as the product of sexual maturity rate and pregnancy 
rate (given maturity) at age t – 1, multiplied by 0.476, which is the expected proportion of calves 
that are females assuming a conservative 1.1:1 male-biased sex ratio (Lockyer 2003).  Standard 
errors of maturity and pregnancy rates were weighted to arrive at the final fertility estimates: 
0.284 ± 0.060 for age-4 individuals and 0.442 ± 0.033 for age 5+.  We did not distinguish 
between sexes in the model because of limited observations in the strandings dataset and a 
similarity of age structure between sexes in the bycatch dataset (Read and Hohn 2005). 
 
Basic model framework 

We begin with the competing risk model of Siler, which has been used to describe 
survivorship curves from life table data for many mammal species (Siler 1979, Barlow and 
Boveng 1991, Bloch and Lockyer 1993, Gage 1998, Stolen and Barlow 2003).  Age-specific 
mortality is a function of three hazards that separately describe mortality risk for juveniles, 
mature adults, and senescing animals.  These three risks decrease, remain constant, and increase 
with age t, respectively, and are expressed as 
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 μj,t = a1exp(-b1t),         (1)  
 μm,t = a2,     
 μs,t = a3exp(b3t),  
   
where the a’s and b’s are parameters (non-negative) to be estimated from the data.  Total 
mortality risk through time is the sum of these three hazards, i.e.,  
 

μt = μj,t + μm,t + μs,t ,         (2)  
 

and the age specific mortality rate (i.e., the probability of dying between years t and t+1, given 
survival to age t) is 
 

q(t) = μt /(1+ μt).         (3) 
 

For a population in stable age distribution and growing at exponential rate r, the number of 
animals dying in each age class is proportional to the number of individuals alive in each age 
class multiplied by the mortality rate for each age class (Caughley 1977).  Thus, if the age 
distribution of beach-stranded animals is representative of animals dying in the population, the 
expected proportion of stranded animals in each age class is 
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where l(t), is the probability of surviving from birth to age t, with l(0) = 1 and l(t) = l(t – 1)·[1 – 
q(t – 1)]  for all other age classes.  The goal is to estimate the population growth rate and the 
parameters describing the shape of the age-specific mortality or survivorship [l(t)] curve.  In the 
absence of growth rate or recruitment estimates, mortality has traditionally been estimated based 
on assumed values for r (Caughley 1977, Stolen and Barlow 2003).  However, we had no basis 
for choosing possible values of r in our system, and obtaining inference about this parameter 
from the model was an important motivation of our study.  
 
A mixture model 
 For a population impacted by bycatch mortality, beach-stranded animals are a mixture of 
animals that die from natural causes and in fishing nets.  Secchi and Fletcher (2004) proposed the 
following extension of the Siler model for using age-structured strandings and gillnet-mortality 
data to investigate demography of franciscana dolphins (Pontoporia blainvillei): 
 

p’(t) = α · p(t) + (1 – α) · Q(t),        (5) 
 

where α is a mixture parameter describing the relative contribution of natural deaths [p(t); eqn. 4] 
and bycatch mortality [Q(t), approximated as the age-structured bycatch data yt] to the age 
structure of stranded animals [p’(t)].  The strategy of this model is to isolate natural population 
dynamics from the dynamics affected by bycatch mortality.  Estimation occurs on the former.  
Thus, given an estimate of r (describing potential growth in the absence of bycatch), the natural-



  SC/59/BC6 

 6

survivorship parameters (a1, a2, a3, b1, b3) and α are estimated by maximizing the multinomial 
likelihood 
 

L(n) = [ ]∏
=

′
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t

nttp
0

)( .         (6) 

 
This model was an important conceptual advance for using strandings data to study 

cetacean demography in systems significantly impacted by fisheries mortality.  However, as in 
the non-mixture case, r must be known to estimate the survivorship parameters.  Also, this model 
does not allow one to evaluate the impacts of bycatch mortality on population dynamics; 
estimation is restricted to parameters that describe natural survivorship and is conditional on a 
value for r that describes growth in a system with no bycatch mortality.  Finally, this model 
implicitly assumes that population dynamics underpinning p(t) and Q(t) are independent of each 
other, which is unlikely to be the case.   

We desire a model that allows us to: (1) make inference about both the survivorship 
parameters and r, rather than having to assume or independently estimate a value for r, and (2) 
evaluate demographic rates not just for the population in the hypothetical absence of fisheries 
impacts, but to assess the impacts of bycatch on demographic rates as well.  

 
Extending the mixture model 

We extended the model of Siler to include a description of mortality due to fisheries 
bycatch.  For this we draw on work by Heligman and Pollard (1980), who modeled human 
mortality as the sum of four risk components, including one for which risk is maximized at some 
point in the middle of life (e.g., mortality of men during war, or of women due to complications 
with childbirth).  Based on their model, we express “bycatch risk” as 

 
 μb,t = D exp{-E[ln(t)-ln(F)]2},        (7) 
 
where D, E and F are parameters (non-negative) to be estimated from the data.  Parameter D 
increases with bycatch risk.  Parameter F is a location parameter, corresponding to the age at 
which bycatch risk is highest.  Parameter E increases as risk becomes more concentrated around 
age F.  Note that μb,t is undefined at t = 0, which we handled by estimating t itself as a value 
between 0 and 1 for animals in their first year of life and using the corresponding estimate of μb,t 
for μb,0.  The added mortality rate due to bycatch (e.g., the probability of being killed in a gillnet 
between year t and t+1, given survival to t is 
 
 qbyc(t) = μb,t /(1+ μb,t).         (8) 
 
We will view equation 2 as the risk function for animals that die of natural causes, so that q(t) 
from equation 3 is renamed qnat(t), and total mortality rate is 
 
 qtot(t) =  qnat(t) + qbyc(t).         (9) 
 
Our mixture model is as in equation 5, but we redefine the terms from that equation: 
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Here, r is for the actual population and thus reflects all sources of mortality, so it can be negative 
if bycatch has a strong impact.  Equation 10 says that for animals which die a natural death, the 
proportion of deaths in each age class is proportional to the relative frequency of individuals that 
are alive in each class [∝ e-rt ltot(t)] multiplied by the mortality rate due to natural causes for each 
age class.  Equation 11 is similar for animals that die in gillnets; the proportion of deaths is each 
age class is proportional to the age-structure of animals that survive all sources of mortality to 
age t [hence the ltot(t) term in these equations] multiplied by the mortality rate due to bycatch for 
each age class.  Dead animals are a mixture of these two mortality types.  The proportion of 
deaths due to natural mortality is α, which is not estimated independently but rather is calculated 
directly from the other estimated parameters: 
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The expression within brackets is just the numerator from equation 10 divided by the sum of 
denominators from equations 10 and 11.  If strandings are an unbiased sample of deaths in the 
population, then α is also the proportion of strandings due to natural deaths (see below for 
dealing with biased strandings samples).   

This model explicitly describes survivorship in both the real population and in the 
population under a scenario of no bycatch.  The former [ltot(t)] is calculated directly from all 
survivorship parameters (a1, a2, a3, b1, b3, D, E and F), whereas the latter [denoted lnat(t)] is 
calculated from the a’s and b’s only.  Given estimates for lnat(t) and independent estimates of 
age-specific fertility rates [m(t)], we can additionally use the Euler equation to estimate 
population growth rate (rnat) under a scenario of no bycatch (once stationarity is reached): 

 

 ∑
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Parameter estimation 

For a vector of age-structured strandings data n and bycatch mortality data y, the 
likelihood function is 

 

L(n, y | θ) = ∏
=

T

t 0
M(nt | θ) · M(yt | θ),       (14) 
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where M denotes the multinomial distribution and θ is the parameter set (a1, a2, a3, b1, b3, D, E, F, 
r).  The first component of the likelihood can be calculated as in equation 6, where the 
components of p’(t) in equation 5 have been replaced by equations 10 – 12, and the age-
structured bycatch data, yt, are substituted for Q(t).  The second likelihood component is 
 

 L(y) = [ ]∏
=

T

t

yttQ
0

)( ,          (15) 

 
where Q(t) is from equation 11. 
 We estimated parameters using WinBUGS 1.4.1 (Spiegelhalter et al. 2004), freely 
available software for performing Bayesian analysis via Markov Chain Monte Carlo (MCMC) 
methods.  For each model, we kept samples from two MCMC chains of length 400 000 
iterations, following a burn-in of ~ 15 000 to 50 000.  We kept every 80th sample to reduce 
autocorrelation; thus we calculated posterior distributions for parameters from 10 000 samples.   
 
Bayesian priors 

 We used uniform (flat) priors for all parameters in equation 14 (Table 1).  Intervals were 
limited at one end of the distributions to the bounds of possible parameter values (e.g.: a’s, b’s, 
D, E, F, rnat ≥ 0).  Interval bounds at the other end were specified to exceed what we considered 
plausible limits to parameter values.  Thus, priors were uninformative with the following 
exception.  Siler parameters (a’s and b’s) can take on any positive value, but we restricted their 
values to relatively small intervals in order to improve the stability of their estimates.  A variety 
of combinations of Siler parameters can describe the same survivorship curve and we found a 
full range of survivorship curves can be described well by Siler parameters with values between 
the intervals specified by the prior distributions we used.   

 
Constraints 

Since rnat, r, and the parameters for natural and bycatch mortality rates were not 
identifiable, some external information or assumptions to constrain parameter estimates for 
useful inference.  First, we linked the model of equation 14 to two Euler equations: one 
describing natural (potential) dynamics (eqn. 13) and the other describing actual dynamics [like 
eqn 13, but using r and ltot(t) instead of rnat and lnat(t)].  At each MCMC sample, values of lnat(t) 
and ltot(t) (calculated from the survivorship parameters), age-specific fertilities [m(4) and m(5+)], 
and r and rnat had to satisfy Euler unity constraints.  Informative beta prior distributions were 
specified for fertilities (Table 1).  Second, we asserted that survivorship to the known maximum 
age for harbor porpoise (24 years old, North Sea; Lockyer 2003) had to be < 0.01.  Additional 
constraints are possible with additional information about the system.  For example, one might 
constrain natural calf mortality, mortality of a particular age, or overall non-calf mortality based 
on information from a mark-resight study.  If independent abundance estimates were available, 
informative priors could be specified for r, and so on.  Incorporating such information would 
increase precision of all estimated parameters in the model. 
 
Sources of bias 

One probable source of bias in strandings samples is that animals which die naturally 
may be less likely than carcasses discarded by fishers to show up on the beach (e.g., if the former 
are killed by predators or if they sink due to lack of buoyancy following death by starvation).  



  SC/59/BC6 

 9

Thus bycatch may be overrepresented in strandings data and the proportion of strandings from 
natural deaths will be less than α.  We addressed this source of bias by adding a correction term γ 
that represents the relative probability of washing up on shore for an animal which died of 
natural causes compared to an animal that died from interaction with fisheries:  

 

p’(t) = )(
)1(

1)(
)1(

tQtp
ααγ

α
ααγ

αγ
−+

−
+

−+
.      (16) 

 
Here, we have multiplied the first α in equation 5 by γ and then rescaled both mixture terms [αγ 
and (1 – α)] so they sum to 1.  Unfortunately, γ and α are not identifiable and so cannot be 
estimated simultaneously without additional information.  Thus we performed modeling using γ 
= 1, 0.5, and 0.15.  These represent scenarios in which an animal that died in a gillnet is equally 
likely, twice as likely, or nearly seven times as likely, respectively, to occur in a strandings 
sample compared to an animal that died naturally.  The third value is based on recent strandings, 
fisheries mortality, and abundance data from the 2005 stock assessment report (SAR) for harbor 
porpoise (Waring et al. 2005), and was approximated as follows.  From 1993-1999 an average of 
5.8 out of 417 (0.013) harbor porpoises killed in observed US fisheries were stranded along US 
coasts.  Using hypothetical sets of plausible Siler parameters consistent with 4% annual growth 
and an abundance point estimate for 1999 of 89 700 animals, the expected number of natural 
deaths in the population is roughly 15 000 (about 17%).  Of these, 36.4/year (0.0021) stranded 
from 1999-2003.  The ratio of natural-death stranding rate to fisheries-death stranding rate is 
roughly 0.15.  Calculating crude γ in a similar fashion based on the 2007 harbor porpoise SAR 
(Waring et al. 2007) yields a point estimate of ~ 0.41, while doing so based on data from Cox et 
al. (1998) yields γ ~ 0.07.  This range of values highlights the considerable uncertainty in γ, and 
these values did not even address uncertainty in constituent values, but all suggest that γ is 
probably much less than 1. 
 We also expect calf mortality caused by fisheries to be underrepresented in observer 
samples.  This is because calves whose mothers die in gillnets are subsequently likely to die of 
starvation (Woodley and Read 1991).  This probable data bias should lead to underestimating the 
impact of fisheries on calf mortality and will in turn lead to high-biased estimates of natural calf 
mortality in order to explain the numbers of stranded calves.  We addressed this by running two 
sets of models: one on the original data (we call these models A, B, C, each model corresponding 
to the three γ values above in descending order) and one on a dataset in which we artificially 
added 34 calf mortalities to the 32 calves recorded in observer samples (we denote these D, E, 
F).  This added calf mortality represents a worst-case in which all sexually mature individuals in 
the bycatch sample had 0.28 (for 4-yr olds) or 0.44 (for age 5+) calves that were not included in 
the bycatch sample but that subsequently died. 
 We summarize results from individual models and then provide detailed results based on 
averaging results from models B, C, E, and F.  We felt these models (γ ≤ 0.5) were the most 
plausible for reasons mentioned above.  Results were averaged by drawing a total of 10 000 
samples from MCMC chains of the four individual models with uniform probability. 
 
RESULTS 

 
Inference from individual models 
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 Median estimates of r and rnat across the six model scenarios ranged from -0.038 to 0.000 
and from 0.032 to 0.052, respectively (Table 2).  Ninety-five percent upper limits (one-tailed) for 
rnat varied from 0.098 to 0.121.  Uncertainty in estimates of r was high, but the probability of 
population decline as a result of unsustainable bycatch mortality (i.e., proportion of posterior 
distribution for r < 0) varied from 0.50 to 0.73.  All models suggested natural mortality of harbor 
porpoise calves is substantial, with median estimates ranging from 0.33 to 0.46 (Table 2).  These 
are higher than published estimates for any other odontocete (Olesiuk et al. 1990, Wells and 
Scott 1990, Bloch and Lockyer 1993, Herzing 1997, Haase and Schneider 2001, Stolen and 
Barlow 2003, Kogi et al. 2004).  High calf mortality rates were required to explain the 
disproportionately large number of calf carcasses in beach-strandings data relative to in the 
bycatch samples, even after we artificially inflated the latter.  Calf mortality estimates were 
highest in scenarios when γ = 0.17 (models C and F) to account for the large numbers of beach-
stranded calf carcasses when the natural-death component of the strandings sample was assumed 
to be comparatively small (Table 2).  Annual natural mortality rates declined to a minimum 
between ages 5 and 6 [qnat(5)] in all models except F, in which minimum mortality occurred 
between ages 4 and 5 (Fig 2).  Median estimates for qnat(min) across models ranged from 0.059 
to 0.087.  Median natural non-calf mortality (weighted by proportion of individuals alive in age 
class) varied from 0.110 to 0.133.   

The extent to which bycatch risk increased mortality rate varied considerably across 
models (Fig. 2).  However, in all cases, mortality risk was highest for two-year olds and in 
general was highest in early life.  Across models, median estimates for the proportion of the 
population removed by bycatch annually ranged from 0.023 to 0.059 (Table 2).  Median 
estimates of other derived demographic parameters, including generation times, net reproductive 
rates (expected number of female calves a female will have in her lifetime), and the proportion of 
deaths occurring in the population due to natural causes (α) are in Table 2.  The proportional 
contribution of natural deaths to stranding samples (η) varied from 0.316 to 0.821 across models.  
Values from models with γ ≤ 0.5 (η = 0.316 to 0.659) are more similar to values reported by Cox 
et al. (1998; 0.37) and provide additional justification for excluding models with γ = 1 for model 
averaging purposes. 

 
Inference from model averaging 
 Posterior distributions for mortality parameters (Fig.3) did not appear unduly constrained 
by the priors we specified, with one exception.  The upper bound of 5 used in the prior for 
parameter b1 appeared to constrain its posterior distribution slightly.  However, this constraint 
was necessary for two reasons.  First, larger values of b1 result in natural mortality curves in 
which one-year olds have the lowest mortality.  This is biologically unrealistic, but estimates 
greater than 5 occur without the constraint because concomitant increases in parameter D enable 
high numbers of age-1 strandings to be explained by unrealistically high bycatch mortality of 
one-year olds.  Second, for these data, the rate of decrease in juvenile risk increases 
asymptotically as b1 approaches ~ 7.  Higher values of b1 therefore have no additional effect on 
the juvenile risk curve, so estimates of b1 become unstable, with values between about 7 and 
infinity occurring with equal probability.  The posterior distribution for t0 was constrained by its 
prior, but values > 1 are not possible under our assumption that the value of t for a 0-yr old must 
be less than t of a 1-year old (which is obviously 1).  Posterior means for fertilities were slightly 
larger than priors (m[4]: mean = 0.30, SD = 0.06; m[5+]: mean = 0.46, SD = 0.016), indicating 
better model fit with fertilities higher than those reported by Read and Hohn (1995).  
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Because of skewness and correlation between parameters, using means or medians for all 
parameters is not appropriate for obtaining mortality or survivorship curves.  We calculated 
curves for each MCMC sample of the mortality parameters and then age-specific mortalities and 
survivorships (and other related parameters) were subsequently summarized.  As expected given 
the available information, there was considerable uncertainty in age-specific estimates of 
mortality and the survivorship schedule (Fig. 4).  However, there was clear evidence of high 
natural mortality rates of calves (90% CI: 0.25 – 0.57; median = 0.40), with mortality declining 
to a minimum around the age of first reproduction [90% CI for qnat(5): 0.020 – 0.125; median = 
0.067] and accelerating senescent mortality occurring before age 15.  Natural mortality estimates 
for calves appeared approximately normally distributed (Fig. 5), whereas mortality estimates for 
young adults displayed much weaker central tendency, hence the wide credible intervals for 
qnat(5).  Mortality estimates beyond about age 12 became increasingly uncertain due to lack of 
data for older age classes. 
 Mean natural non-calf mortality, qnat(t>0), had a median estimate of 0.113, with 90% CI 
= 0.058 – 0.156 (Fig. 6).  Median rnat was 0.043 (90% CI = 0.003 – 0.113) with a highly skewed-
right posterior distribution that lacked any central tendency (Fig. 6).  This is a result of the prior 
constraint for rnat to be greater than zero. Estimates of rnat were strongly correlated to non-calf 
mortality (Fig. 7).  Conditional on low values of non-calf mortality (e.g., the lower 10th 
percentile), estimates of rnat had a mean near 0.10 and median near 0.12 (Fig. 6, b1).  Conditional 
on the center 10th (45th to 55th) percentile values of non-calf mortality, estimates of rnat had a 
mean near 0.05, close to the median marginal estimate of rnat.  However, for larger estimates of 
non-calf mortality, conditional posterior distributions for rnat begin stacking up against zero.  
This results in the highly skewed marginal posterior distribution for rnat.   
 Based on median estimates, bycatch morbidity increased annual mortality rates by nearly 
0.08 during the third year of life and about 0.05 until after the sixth year (Fig. 4).  These 
estimates were highly uncertain, with 90% CI ranging from 0.01 to 0.23 for 2-yr olds (Fig. 4).  
However, models provided clear indication that peak risk to bycatch occurred between age 2 and 
3.  Total incidental take was as estimated at 4.2%, but with a wide credible interval (90% CI = 
0.8 – 12.5%; Fig. 5).  Importantly, because bycatch risk was higher for younger animals of 
higher reproductive value (Fig. 8), a given amount of take corresponded to a disproportionately 
large effect on r.  This is clear from the relationships describing r and (rnat – r) as a function of 
‘% incidental take’ (Fig. 7).  Population decline was expected for take > 0.036 of the population 
even though the median estimate of rnat was 0.042.   This is because a 4% removal from the 
population corresponded to a 5% reduction in r under this model. 
 Mediate estimates of net reproductive rates (R0) and generation times were 1.47 female 
calves/female (90% CI = 1.03 – 2.80) and 9.4 years (CI = 8.2 – 10.5), respectively, in the 
absence of fisheries mortality.  These were reduced to 0.87 female calves/female (CI = 0.30 – 
1.92) and 8.9 years (CI = 7.4 – 10.1), respectively, as a result of fisheries mortality under this 
model.  Age-specific net reproductive rates peaked at age 5 (Fig. 8), coinciding with age of first 
reproduction for most females.  Median estimates of life expectancy in a population not subject 
to fisheries mortality was 5.3 years for a newborn and peaked at 8.5 for an individual that 
reached its second birthday.  In a population affected by bycatch, newborn life expectancy was 
3.8 years and did not peak until an individual reached its fourth birthday, at which point life 
expectancy was 6.5 years.   
 
Model goodness of fit 
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 In general, models fit the data well (Fig. 9).  We conducted χ2 tests of frequencies in each 
age class, in which the median χ2 value from MCMC samples was evaluated against χ2 values 
from 100 000 random datasets generated from a multinomial distribution with expected 
frequencies equal to that of the fitted median age distribution.  P-values across all 6 model 
scenarios varied from 0.34 – 0.60 for the strandings datasets (0.43 for the model averaged 
results), and from 0.66 – 0.80 for the bycatch datasets.  However, the frequency of age-1 
individuals in the strandings dataset was considerably higher than could be explained by the 
model (Fig. 9).  This suggests that either strandings data were a biased sample of the population 
with respect to the number of age-1 individuals (e.g., if dead one-year olds are more likely to 
wash up than dead individuals of other age classes) or that the Siler model does not accurately 
characterize mortality of harbor porpoises in early years of life.  Under the Siler model, juvenile 
risk decreases exponentially from birth.  However, if age-1 mortality is similar to calf mortality 
and then drops sharply thereafter, the mortality function will be convex before becoming 
concave, and will not be described well by the Siler function during those years.   
 
DISCUSSION 
 
 We have described an analytical framework for combining different sources of 
information that is either available or could be collected for many coastal odontocete populations 
to obtain detailed inference about their demography and the impacts of bycatch on their vital 
rates.  Prior constraints on parameter estimation were specified with uncertainty (e.g., fertility 
rates) or were addressed through use of scenarios (e.g., for γ and age-0 bycatch data bias), and 
uncertainty in output parameters were fully described.  Our framework is flexible in that it allows 
many types of additional information to be incorporated to inform parameter estimation.  We 
only used reproductive information, the Euler equation, and a plausible longevity specification to 
help guide model fitting, although other information could have been incorporated if available.  
For example, current strandings data from the Marine Mammal Strandings Network in the US 
include information about the proportion of stranded carcasses that are due to interactions with 
fisheries (Waring et al. 2007).  This information could be used to constrain estimates of the 
mixture parameter in equation 16, which should allow direct estimation of γ.  Repeated 
abundance data and estimates of fisheries take could be used to place informative priors on r or 
on derived estimates of percentage take.  Our framework should also be applicable for 
populations that do not interact substantially with fisheries but for which strandings data are 
available.  In such cases, the basic Siler model could be used in conjunction with age-specific 
fertility data and use of the Euler equation. 
 The primary assumption of our model is that age structure is stable.  Some methods have 
been developed to circumvent this assumption (e.g., Udevitz and Ballachy 1998, Doak and 
Morris 1999), but all rely on data typically not available in studies of odontocetes.  For now, 
assuming stationarity is a limiting but unavoidable caveat of most demographic analyses of long-
lived and data deficient species.  However, demographic estimates for species with “slow” life 
histories (e.g., high survival rates and long generation times) may be reasonably robust to 
stochastic fluctuation in stationarity (Stolen and Barlow 2003) and our use of strandings data 
from over a 17-year time period may help buffer against temporary effects on age-specific 
survival or strandings structure.  Fitting smooth functions to the data may similarly buffer against 
transient processes or data biases.  For example, the large numbers of age-1 individuals in the 
strandings data suggest either higher natural mortality for 1-year olds than can be described by 
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an exponentially declining juvenile risk function, or that carcasses of 1-year olds are more likely 
to be recovered from beaches (e.g., if there is age variation in distribution due to differential 
habitat use).  In the latter case, the model estimates would be correcting for this bias, since they 
predict fewer 1-year old carcasses in strandings samples than were observed.  Permanent shifts in 
age structure due to chronic age-biased mortality would not be a problem if a new stable 
distribution had been achieved, since we were modeling this explicitly.  More problematic would 
be if age structure was in the process of transition due to bycatch being a recent phenomenon 
relative to harbor porpoise life spans or due to shifts in bycatch regimes.  Thus some caution 
should be exercised in the interpretation of our results. 
 The second main limitation in our model was the need to speculate on the upper 
probability of survivorship to maximum age.  This was the only component of our estimation 
that was not entirely data driven.  Maximum observed age in strandings data may significantly 
underestimate the maximum possible age (Barlow and Boveng 1991), especially for a population 
subject to additive human-caused mortality.  Maximum-age records from many harbor porpoise 
populations suggest that longevity > 20 yrs is likely (Lockyer 2003) and as strandings datasets 
become larger, we will be better able to make informed guesses about maximum lifespan.  
However, what proportion of individuals lives to maximum age?  We suggested a reasonable 
upper limit of 0.01.  Subject to this constraint, the modal estimate for survivorship to age 24 was 
very close to zero (Fig. 3).  Therefore, we are comfortable that an upper constraint of 0.01 did 
not unduly restrict or bias estimates.  Still, it may also be difficult to place sensible constraints on 
longevity for systems that are more data limited.  In systems where survival estimates can be 
incorporated to constrain the model (e.g., if non-calf survival estimates are available from 
photographically based “capture-recapture” studies), this would probably allow the longevity 
constraint to be removed. 
 Finally, we modeled both sexes of harbor porpoise together because of the relatively 
small strandings dataset.  However, sex differences in survivorship have been observed in other 
mammal species including odontocetes, with females generally expected to have higher survival 
and longevities (Caughley 1966, Bloch and Lockyer 1993, Allman et al. 1998, Stolen and 
Barlow 2003, Toïgo and Gaillard 2003, Tinker et al. 2006).  If this is the case for harbor 
porpoises, then estimated rates of survivorship and population growth are expected to be higher 
than what we present from this analysis.  On the other hand, male-biased sex ratios have 
consistently been reported in harbor porpoises samples in the eastern Atlantic (Lockyer 2003) 
but whether this reflects a male-biased population (higher male survival) or male-biased gillnet 
mortality (lower male survival) is unknown (Lockyer and Kinze 2003).  Moreover, species sex 
ratios have been observed to vary between populations and through time (Bloch and Lockyer 
1993).  In our data, bycatch samples were 1.2:1 male-biased and strandings data were 1.3:1 
male-biased (44/77).  More data should enable us to estimate sex-specific survivorship of harbor 
porpoise in future efforts. 

Subject to the limitations we have mentioned, our study provides the first empirical 
estimates of several demographic parameters for harbor porpoise, and to our knowledge, we have 
provided the first entirely data-driven estimates for any odontocete of the impacts of bycatch on 
a species’ mortality schedule and other age-related demographic parameters.  Empirical 
estimates of mortality schedules only exist for a handful of odontocete species, so our results 
provide important rare insight to cetacean life histories in general.  Previous efforts to investigate 
population growth or impacts of bycatch on harbor porpoise have relied on estimated 
survivorship schedules of other species, with highly variable outcomes.  Barlow and Boveng 
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(1991) used a human survivorship curve rescaled to longevity near 10 years, in combination with 
harbor porpoise reproductive information, to obtain what they considered an upper bound 
estimate of rmax = 0.09.  Woodley and Read (1991), assuming longevity of 12 or 15 years, 
estimated potential rmax to vary with input parameters from zero up to 0.10 and 0.05 under two 
different models, the first based on methods of Reilly and Barlow (1986), and the second based 
on an estimated survivorship schedule for Himalayan thar (Hemitragus jemlahicus).  Finally, 
Caswell et al. (1998) used a Monte Carlo approach and rescaled survivorship curves from 9 other 
mammal species to estimate a median rmax for harbor porpoise of 0.09 with 95% upper limits 
between 0.14 and 0.18.  Obviously, the results from these studies depended on the model 
survivorship schedules that were used and there is no way to evaluate which estimates were 
valid.  No one has been able to estimate harbor porpoise mortality rates, let alone how these rates 
are affected by fisheries.   
 Our analysis suggests that during the late 1970s through early 1990s, the Gulf of 
Maine/Bay of Fundy population of harbor porpoise was likely declining as a result of 
unsustainable levels of bycatch, which was mostly likely around 4 – 5 % of the population per 
year, and possibly > 12%.  Our posterior distribution for percentage take is similar to the 
confidence interval provided by Caswell et al. (1998), who used a bootstrap analysis of 
population size and incidental take data provided by Bravington and Bisack (1996).  This 
provides some validation to our model.  Precision of our estimates was low, as our method 
merely characterizes the set of possible parameter combinations that describe the data.  However, 
it does so by accounting fully for uncertainty in all parameters and data inputs.  Inclusion of 
additional information and constraints will narrow the set of possibilities and increase precision 
of estimates in future analyses. 

Although we cannot determine whether our estimates of rnat represent rmax, since we do 
not know if the harbor porpoise population was small enough for resources to allow maximum 
possible growth, our analysis provide important empirical validation for using a value of 0.04 as 
a growth rate estimate in PBR calculations for harbor porpoise.  Our best point estimate suggests 
that harbor porpoise natural growth rates are near this level; however, given the disproportionate 
impact of bycatch on young individuals, it may be prudent to use a slightly smaller value for rmax 
in the PBR calculation.  For example, assume for simplicity that rmax = 0.04 and a recovery factor 
= 1 (see Wade 1998, for an explanation of the recovery factor and the PBR equation).  Then, 
allowable take under current PBR management would be 0.02 * Nmin.  This rate (rmax/2) is the 
expected per capita growth when the population is at the minimum level to allow maximum net 
productivity (one half carrying capacity).  However, if the population was at a level where r = 
0.02, a 2% removal from the population would reduce r to -0.005 rather than to zero, based on 
the relationship shown in Fig. 7c.  Although our estimates of rnat contain considerable 
uncertainty, they nevertheless yield a lower plausible limit than that provided by Caswell et al. 
(1998), and they are more valid in general than previous studies by virtue of being anchored 
entirely to harbor porpoise data rather than to survivorship schedules from other species.   

Our upper credible limits for rnat exceed that typically considered plausible for 
odontocetes.  In part, this probably just reflects a lack of additional information that could be 
used to constrain mortality estimates to a narrower range than that which fits the data.  For 
example, the expected value of rnat was 0.10 when non-calf mortality was 0.06 (lower 90% CI), 
based on the relationship shown in Fig. 7a.  This mortality rate is probably unrealistically low, 
but it fits the data and we have no basis for setting a lower limit.  Obtaining additional 
information to constrain any of the estimated parameters, whether calf survival or non-calf 
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survival (with or without impacts of bycatch), estimated take percentage, or independent 
estimates of r based on abundance trend data, would help increase the precision of other 
parameter estimates.  Additionally, however, the relatively large values for rnat may to some 
extent reflect a genuinely higher growth rate potential of harbor porpoises relative to other 
odontocetes.  Harbor porpoises are unusual among odontocetes in their reproductive schedule; 
few other species have an earlier age of first reproduction or reproduce as frequently (Read and 
Hohn 1995).  Considering that harbor porpoises seem to have similar life spans to some other 
small odontocetes that calve less frequently (e.g., franciscana [Kinas et al. 2002], Hector’s 
dolphin [Slooten et al. 2000]), we would expect harbor porpoises to have higher population 
growth rate potential than these species unless harbor porpoises have substantially more severe 
mortality schedules.  We did estimate harbor porpoise calves to have higher natural mortality 
rates than has been reported for any other odontocete, but information on mortality rates for 
calves or any other age class is very rare for odontocetes in general and does not exist for other 
species with short life spans. 
 In summary, we have demonstrated a new Bayesian application for obtaining inference 
and characterizing uncertainty about cetacean demography based on the types of information 
mostly likely to be available for many populations.  Our model is flexible, can incorporate 
additional information beyond what we built into our models, and could be extended to other 
systems with age-at-death data, including terrestrial systems and possibly other marine taxa with 
abundant strandings data such as sea turtles (Epperly et al. 1996) or sea otters (Tinker et al. 
2006).  We used this application to obtain novel insight to harbor porpoise demography, and the 
historical impacts of bycatch on vital rates.  As additional abundance estimates are obtained and 
as more recent age-at-death data based on strandings and observer programs become available, 
this framework could be applied to evaluate more current demographic trends with greater 
precision.  We hope this framework will find utility in other systems to advance our 
understanding of demography for other odontocetes and that it will inform the process of setting 
incidental take limits for marine mammals. 
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Table 1. Prior distributions and constraints 

Parameter Prior distribution Interpretation 

a1 Uniform(0, 3) Increases with age-0 mortality risk 

a2 Uniform(0, 1) Parameter for constant mortality risk 

a3 Uniform(0, 1) Parameter for senescent mortality risk 

b1 Uniform(0, 5) Rate of decrease in juvenile mortality risk 

b3 Uniform(0, 1) Rate of increase in senescent mortality risk 

D Uniform(0, 1) Parameter related to severity of bycatch risk 

E Uniform(0, 5) Shape parameter for bycatch risk 

F Uniform(0, 10) Parameter related to age of peak bycatch risk 

rnat Uniform(0, 0.5) Population growth in absence of bycatch 

ρ Uniform(-0.5, 0) Difference between r and rnat (r = rnat – ρ) 

t0 Uniform(0, 1) Value for t in estimating μb,0 

m(4)a Beta(8.2, 5.5) * 0.476 Fertility of 4-yr olds (μ = 0.284, σ = 0.06)b 

m(5+)a Beta(12.0, 0.9) * 0.476 Fertility of 5+ yr olds (μ = 0.442, σ = 0.03)b 

lnat(24)c Uniform(0, 0.01) Survivorship to age 24 

a Fertilities estimates were used in Euler equation to constrain other parameters. 

b Female calves per female, calculated based on data from Read and Hohn (1995) and an 

assumed 1.1:1 male-biased fetal sex ratio (Lockyer 2003). 

 c Estimates of lnat(24) derived from a and b parameters had to satisfy constraint of being 

between 0 and 0.01 
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Table 2.  Demographic estimates (median and 90% Bayesian credible intervals) from 6 models fit to harbor porpoise beach-strandings 
and bycatch data.  Models A – C were fit to original data.  Models D – F were fit to data in which age-0 bycatch numbers were 
artificially increased to correct for probable bias in original data.  See text for explanation of γ. 
 
Model A B C D E F 

γ 1 0.5 0.17 1 0.5 0.17 

rnat (%) 4.1 (0.3, 10.6) 4.9 (0.4, 11.9) 3.2 (0.3, 9.8) 3.9 (0.3, 12.1) 5.1 (0.5, 12.0) 4.1 (0.4, 10.7) 

r (%) -1.1 (-12.6, 6.6) -1.1 (-10.4, 7.5) 0.0 (-6.6, 7.9) -0.5 (-9.9, 6.3) -2.2 (-14.8, 6.8) -3.8 (-21.5, 6.3) 

P(r < 0) 0.596 0.583 0.499 0.559 0.645 0.729 

Take (%)a 4.0 (0.5, 12.1) 4.5 (0.8, 10.1) 2.3 (0.6, 5.6) 3.8 (0.4, 11.4) 5.9 (1.1, 13.4) 5.9 (1.5, 15.6) 

α (%)b 81.4 (57.2, 97.4) 79.4 (61.2, 95.8) 89.2 (78.7, 96.9) 82.1 (53.4, 97.7) 73.9 (53.0, 94.0) 75.5 (53.8, 92.3) 

η (%)c 81.4 (57.2, 97.4) 65.9 (44.1, 91.9) 55.4 (35.7, 82.6) 82.1 (53.4, 97.7) 58.6 (36.1, 88.6) 31.6 (14.8, 64.2) 

qnat(0) 0.35 (0.24, 0.44) 0.38 (0.26, 0.51) 0.46 (0.30, 0.62) 0.33 (0.22, 0.42) 0.34 (0.22, 0.45) 0.42 (0.26, 0.58) 

qnat(min) 0.08 (0.03, 0.13) 0.06 (0.02, 0.12) 0.06 (0.02, 0.11) 0.09 (0.03, 0.13) 0.08 (0.03, 0.13) 0.07 (0.02, 0.12) 

qnat(t>0) 0.13 (0.07, 0.16) 0.11 (0.05, 0.16) 0.11 (0.06, 0.15) 0.13 (0.06, 0.16) 0.12 (0.06, 0.16) 0.11 (0.06, 0.15) 

TG.nat
d 9.3 (8.3, 10.3) 9.5 (8.5, 10.6) 9.6 (8.6, 10.6) 9.3 (8.3, 10.3) 9.2 (8.1, 10.3) 9.1 (7.9, 10.3) 

TG
d 8.9 (7.5, 9.9) 9.0 (7.8, 10.1) 9.3 (8.3, 10.4) 8.9 (7.7, 9.9) 8.7 (7.2, 10.0) 8.6 (7.0, 10.3) 

R0.nat
e 1.44 (1.03, 2.61) 1.57 (1.04, 3.00) 1.34 (1.02, 2.50) 1.41 (1.03, 2.98) 1.56 (1.04, 2.95) 1.43 (1.03, 2.64) 

R0
e 0.90 (0.34, 1.81) 0.91 (0.39, 1.97) 1.00 (0.53, 2.07) 0.95 (0.42, 1.77) 0.82 (0.29, 1.85) 0.71 (0.17, 1.77) 

a = percentage of population removed by bycatch. b = percentage of deaths in population due to natural causes. c = percentage of 
beach stranded animals that died by natural causes. d = generation time for a population not affected by bycatch (TG.nat) and one 
affected by bycatch (TG). e = Net reproductive rate (females/female) for a population not affected by bycatch (R0.nat) and one affected 
by bycatch (R0).  See text for descriptions of other statistics. 
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Figure Captions 
 
FIG. 1. Age frequency data for the Gulf of Maine/Bay of Fundy population of harbor porpoise.  
Strandings data are from Massachusetts (1977-1993; Wenzel 2000).  Bycatch data are from the 
Gulf of Maine, US, and Bay of Fundy, Canada (1989-1993; Read and Hohn 1995). 
 
FIG. 2. Median survivorship and mortality curves from six models fit to harbor porpoise bycatch 
and beach-strandings data.  (a) Survivorship schedule in the absence of fisheries mortality. (b) 
Survivorship including natural and bycatch mortality. (c) Annual mortality rates in the absence 
of fisheries mortality. (d) Annual mortality rate due to bycatch.  Mortality in panels (c) and (d) 
sum to total mortality, which yield survivorship in (b).  Models A – C (solid lines and symbols) 
were fit to original data.  Models D – F (broken lines and open symbols) were fit to data in which 
age-0 bycatch numbers were artificially increased to correct for probable bias in original data.   
 
FIG. 3.  Model-averaged Bayesian posterior densities (with medians and 90% credible limits) for 
natural mortality parameters (a’s and b’s), bycatch mortality parameters (D, E, F), natural 
survivorship to maximum known age (lnat[24], constrained to be < 0.01), fertilities (m[4] and 
m[5+]), and t0 (the value of t used to calculate μb,0; see eqn. 7 in text). 
 
FIG. 4.  Median estimates (large symbols), 70% (medium symbols), and 90% (small symbols) 
Bayesian credible limits for (a) natural survivorship (no bycatch mortality), (b) actual 
survivorship (including effects of bycatch), (c) natural age-specific mortality, and (d) added 
bycatch mortality of harbor porpoises based on model averaged estimates.  Fine gray lines depict 
50 random curves selected from MCMC chains. 
 
FIG. 5. Posterior distributions for (a) natural calf mortality, (b) natural mortality from age 5 to 6, 
(c) proportion of the population killed by interactions with fisheries, and (d) population growth 
rate, averaged from models B, C, E and F, fit to harbor porpoise strandings and bycatch data.  
Dashed line = median; Dash-dotted line = 70% Bayesian credible interval; Dotted line = 90% 
Bayesian credible interval. 
 
FIG. 6. Posterior distributions for (a) natural non-calf mortality and (c) rnat, averaged from 
models B, C, E and F, fit to harbor porpoise strandings and bycatch data.  Dashed line = median; 
Dash-dotted line = 70% Bayesian credible limits; Dotted line = 90% Bayesian credible limits.  
Arrows (b’s) point to conditional posterior distributions of rnat for 10-percentile ranges (b1 = 0-
10%; b2= 10-20%; b3 = 45-55%; b4 = 80-90%; b5 = 90-100%) of non-calf mortality centered on 
median and CI non-calf mortality values (0.06, 0.08, 0.11, 0.14, and 0.16). 
 
FIG. 7. Scatter plots showing relationships between model averaged estimates of harbor porpoise 
demographic parameters.  Values from 1000 randomly selected MCMC samples are plotted. (a) 
Average non-calf survival [1 – qnat(t>0)] vs. rnat; vertical dashed line shows median survival 
estimate.  (b) Incidental take vs. r; vertical arrow shows the incidental take value (~0.036) at 
which expected r is less than zero. (c) Incidental take vs. decline in per capita growth.  Vertical 
arrow corresponds to the take level at which population decline is expected (see b).  This 
corresponds to an expected decline in growth of ~ 0.045. 
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FIG. 8. Median (a) age-specific net reproductive rates (expected number of female calves a 
female will have in the rest of her live, given she has survived to age t) and (b) life expectancy of 
harbor porpoise, averaged from models B, C, E and F, fit to harbor porpoise strandings and 
bycatch data.  Symbols denote median estimates for a population that is (□) or is not (▲) 
subjected to fisheries mortality.  Broken and solid lines without symbols denote 95% Bayesian 
credible intervals for (□) and (▲), respectively. 
 
FIG 9. Expected and observed (bars) frequencies of harbor porpoise carcasses (a and c) stranded 
on beaches in Massachusetts, and (b and d) retrieved by US and Canadian fisheries observers.  
Top two panels are from model B (γ = 0.5, fit to original data).  Bottom panels are from model E 
(γ = 0.5, fit to data with inflated age-0).  Dashed line is the expected proportion of animals in 
each age class on a continuous scale.  Solid points (●) are the median frequencies from 100 000 
random datasets generated from a multinomial distribution described by the dashed line.  Open 
points (○) depict the 2.5th and 97.5th percentile frequencies from the 100 000 random datasets.
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