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ABSTRACT 
 
This paper aims at providing recent information on abundance of western North Pacific Bryde’s whales, which could be 

used in the Catch Limit Algorithm (CLA). The estimation procedure consists of a total of three stages: 1) get sets of 

underlying abundance estimates in 1988-1996 and 1998-2002 surveys (dealt in Shimada et al., 2008), 2) estimate the 

process error (additional variance) in a mixed-effect model by a restricted maximum likelihood method based on the 

underlying abundance estimates, and then 3) provide point estimates for abundances in 1998-2002, by integrating the 

information from two different survey modes in 1998-2002 surveys, as well as their associated CVs by taking the extent 

of the process error into account. Note that abundance estimates from 1988-1996 surveys, which were not subject to 

oversight by IWC because of no oversight system at that time, did not affect the point estimates of abundances for CLA 

but was used only for the estimation of the process error. To assess the impact of model assumptions and data utilized on 

the estimation of the process error and abundances, computation were made under nine different run sets in total. Under 

the selected case in a base scenario, where the effective strip widths and mean school sizes were estimated by the sub-area 

and survey period and a log-normal mixed effect model was employed in the estimation of the process error, the estimated 

value of the additional CV was 0.447 (CV=43.1%). Taking the additional CV into account, the abundance estimates in 

sub-areas 1W, 1E and 2 were 4,957 (CV=39.8%), 11,213 (CV=49.8%) and 4,331 (CV=55.3%), respectively, and that in 

the whole area was 20,501 (CV=33.7%). The value of the additional CV under a count-based model was 0.535 

(CV=50.2%) and was greater than the above value, which implied that the resultant CVs in abundance estimates were also 

higher than those in the log-normal model; CV=43.9%, 55.1%, 60.0% and 36.6% for sub-areas 1W, 1E and 2, and the 

whole area, respectively. 

 
 
1. INTRODUCTION 
 
The aim of this paper is to provide revised abundance estimates used in the Catch Limit Algorithm (CLA) for 
western North Pacific Bryde’s whales. The estimation procedure consists of a total of three stages: 1) get sets 
of underlying abundance estimates in 1988-1996 and 1998-2002 surveys, 2) estimate the process errors 
(additional variance), and then 3) provide abundances estimates in 1998-2002 and their associated CVs by 
taking the extent of the process error into account. The present paper is the complement to our companion 
paper, Shimada et al. (2008), in which detailed information on surveys and analyses for underlying abundance 
estimation is summarized. 
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There are some modifications in the estimation procedure from our earlier paper. In Shimada et al. (2007), 
which was submitted to the Scientific Committee held in Anchorage, abundance estimates for sub-areas were 
provided as parametric estimates using integrated models, in which area-effects, year trend, a correction factor 
(between two different survey modes) and the additional variance were included as unknown parameters. 
However, in that model, abundance estimates from past surveys (1988-1996), which were not subject to 
oversight administrated by IWC, were used as dependent variables in addition to the recent surveys 
(1998-2002) overseen by IWC. The past data were needed because the recent surveys unfortunately covered 
only once in each surveyed blocks, and therefore it was not possible to estimate the additional variance unless 
additional information on abundance is available. However, such an estimation method might have turned out 
to draw information on abundance from surveys which were not subject to IWC oversight, and therefore the 
method virtually violated the regulation in RMP. To overcome this difficulty, we here take an alternative 
estimation procedure illustrated below. The additional variance is estimated using both the underlying 
abundance estimates in 1988-1996 and 1998-2002 surveys. Meanwhile, the point estimates of abundances in 
1998-2002 in the last stage are estimated based only on the data from the recent surveys although their CVs 
depend on the value of the additional variance estimated with both the surveys. Under this procedure, 
although the variances of estimates still depend on abundance estimates in the past surveys, abundance 
estimates themselves do not depend on the information from the past surveys.  
 
To assess the impact of model assumptions and data utilized on the estimates of the process error and CLA 
abundances, computation were made under totally nine run sets. These were prepared to respond to some of 
the constructive suggestions made during SC59 (IWC 2008; see Appendix). Although the estimation 
procedure in this present paper is slightly different from that in our earlier paper as described above, most of 
these suggestions were still effective. All the responses to the suggestions for the estimation on additional 
variance and their relevant matters were shown in Appendix. 
 
 
2. MATERIALS AND METHODS 
 
2.1 Underlying abundance estimates in surveyed blocks 
 
The underlying abundance estimates are available from two surveys (past=1988-1996, recent=1998-2002; see 
Shimada et al. 2008). The recent survey was conducted with the two survey modes, “abeam closing mode” 
(closing starts after abeam of a school detected) and “normal closing mode” (closing starts after detection of a 
school), while the past survey was done by only the normal closing mode. The effective strip with (ESW) and 
mean school size (MSS) were estimated in several stratifications, and then the best set was selected (Shimada 
et al. 2008). Sampling variances for the abundance estimates in blocks were assessed by the conventional 
ways. However, the variance components for the encounter rates were estimated with leg-unit for the recent 
survey while those for the past survey have been estimated with 1-degree sector, and therefore there is 
inconsistency in sampling unit between past and recent surveys. To resolve this discrepancy in the procedure 
for the estimation uncertainty, a calibration factor was defined and used for adjusting CVs in Past period of 
survey (Shimada et al. 2008). Some of abundance estimates were not useful due to poor coverage or little 
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efforts in blocks. Abundance estimates used for this estimation were discussed in Pre-Implementation 
Assessment in 2005 (IWC 2006), and this decision has still been followed in this paper (except for an option 
that includes no sighting “0” data. See explanation on the run sets below). The information on abundances 
estimates and their CVs, observed school counts, and survey efforts used in this paper are summarized in 
Table 1. A map of the sub-areas and blocks is shown in Figure 1.  
 
 
2.2 Estimation of the process error (additional variance) 
 
The issue of the process error or additional variance arises from the fact that the estimated sampling variances 
for the abundance estimates do not account for variability of abundance level, especially due to inter-annual 
changes in distribution of whale population in the surveyed areas. If the additional variance is ignored, 
uncertainty on abundance estimates tends to be underestimated. Remark that we will use “process error” and 
“additional variance” interchangeably. Also, we here estimate the extent of the process error as the additional 
CV. The model specification will be explained later.  
 
In order to estimate the amount of process error, replicates of surveys in each block in different years are 
usually required. However, the recent 1998-2002 survey covered each block only once and hence only the 
recent surveys themselves never provide such information on the process errors. For this purpose, we made 
use of the past abundance estimates as well as the recent abundance estimates. 
 
For the estimation of the additional variance, log-normal models for the underlying abundance estimates have 
been conventionally used (Cooke 1994, Punt et al. 1997, Skaug et al. 2004 and Kitakado et al. 2005). Here, 
we employed a version of this model as a base model. The mean and variance in the log-normal distribution 
were given by keeping consistency in those moments. The additional variance model has usually area-effects 
as covariates. In addition, year factors are also taken into account in several manners. As described above, we 
have abundance estimates from the abeam and normal closing modes. The estimates based on the normal 
closing mode tend to lead to bias because breaking off the survey effort after the detection of school may 
cause skip of high density area. Hence, we also incorporate the survey mode as a covariate. The log-normal 
model with several covariates is used in integrated analyses to take the several factors into account. A count 
model is also used to deal with “0” data. More detailed explanation on the estimation procedure for process 
errors is given below. The extent of additional variance is estimated with a REML method. Better covariates 
in the model are investigated by AIC based on the likelihood (not the integrated likelihood for REML because 
the latter does not have information on covariates). 
 
2.2.1 Statistical models and estimation: log-normal model 
 
Suppose that an area consisting of A blocks is covered by each of two survey periods. Assume that each block 
is surveyed at least once in each of the survey periods. Let  be the actual abundance in the a-th block in 

year y, and let  and be estimates of  by the abeam closing mode and the normal closing 

mode surveys, respectively. We assume that the abundance estimates are multivariate log-normally distributed 
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as follows:  
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where  and are the vectors of terms expressing the sampling errors in log-abundance, and R is a 

so-called correction factor. For notational convenience, we denote by 
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NN ~,ˆ ε and  the vectors of all the 

abundance estimates, actual abundances and sampling errors, respectively. The variance of abundance 
estimate (Buckland et al. 2001) is given by  
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If abundance estimates share common parameters such as the ESW or MSS across years, blocks and survey 
modes, these error terms are correlated. For example, if two abundance estimates,  and , share a 

common ESW and a common MSS, then the covariance between the two abundance estimates is give by 
iN̂ jN̂
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formula above, we assume the mean, variance, and covariance of the errors for log-abundance as follows: 
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We now assume that the true abundance level varies randomly over years as  
 

ayayay NN ρ+= log~log ,                (5) 

 
where  is an expected abundance in the a-th block in year y, and ayN ayρ  is a random effect accounting for 

inter-annual changes in the distribution of the whale population in the surveyed area. The random effects are 
assumed to be independent and identically distributed as the normal distribution, 
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where σ  can be called the “additional coefficient of variation” since  holds by (5) and 22]~[ ayay NNVar σ=
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(6). 
 
Next, we consider models for the expected abundance level. Let aμ  is a mean area-specific log-abundance at 

a specific year or period (depends on models) in the a-th block. Then, we investigate the four models for  

as follows: 
 

ayN

Case 1: True abundance level is constant over 1988-2002 
 

aayN μ=log  

 
Case 2: True abundance level is exponentially increasing (deceasing) since 1988  
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Case 3: True abundance levels are different between the two survey periods 
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Case 4: Abundance levels differ in the two survey periods with the interaction between the period and 
Latitude (low, middle and high latitudes) 
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Case5: Abundance levels differ in the two survey periods with the interaction between the period and 
block  
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Now the parameter of interest is the additional variance . It is well-known that the conventional ML 
method causes underestimation of the variance factor, and therefore we use an REML method for this purpose. 
However, the integrated likelihood for REML does not have information on covariates. Hence, model 
selection among the Cases above in the estimation of additional variance is done by AIC based on the 
likelihood (not integrated with respect to effect parameters). 
 

2σ

As in a conventional notation of mixed effect models, we represent the model as a linear form as follows: 
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Where  is the vector of log-abundance estimates, X is a design matrix for the fixed-effects in 
linear predictor for , Z is a design matrix for random effects (to handle with the cases where the same 

area was surveyed in a year with different modes in the recent period), and and  are the 
variance-covariance matrix for
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For fixed , the best linear unbiased estimator of β is derived by 2σ
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The additional variance  is estimated by the REML method (Punt et al., 1997, McCulloch and Searle, 

2001; Pawitan, 2001), which maximizes  
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and its uncertainty is assessed by the reciprocal of the second derivative with respect to . 2σ

 
2.2.2 Statistical models and estimation: negative binomial count model 
 
The log-normal model described above can not be employed in the presence of “0” abundance estimates 
unless excluding them. To assess the impact of a way ignoring “0” abundance estimates in the estimation of 
additional variance, we also consider a count data model, where “0” data can be used..  
 
Let ni and mi be the number of schools detected during a survey in a block in a year and its expected value, 
respectively. We then consider a model for the count ni as 
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),( λimNBwhere shows a negative binomial distribution having the probability function  
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, and Lwith the mean and variance ii mnE =][ )/1(][ λiii mmnVar += i and Ai are the effort and the area, 

respectively. The error terms ’s have normal distributions with known parameters to account for estimation 

uncertainty for the log-ratio of ESW to MSS, and if counts in blocks are associated with same ESW and MSS, 
then these error terms are definitely same random variable. N

iu

i’s are modeled with covariates as in Cases 1-5.  
 

λThe REML function for dispersion parameters,  and , is defined as  2σ
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where  is the product of likelihood functions of the count data, random effects, and 

uncertainty in ESW/MSS. Although this function cannot be explicitly expressed in a closed form, a Laplace 
approximation numerically provides REML estimates of and 
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2.2.3 Specification of run sets for the estimation of the process errors 
 
In this paper, impacts of assumptions on the estimation of additional variance are examined through a total of 
nine runs. These runs originally came up from the discussion at SC59. Although we altered the estimation 
procedure as described above, these kinds of investigation are still quite important. For example, we use, as 
base estimates, the abundances with ESWs and MSSs estimated by period and sub-area (see Run#1). As a 
sensitivity test, we also use another set of underlying abundance estimates with ESWs and MSSs estimated by 
only period (Run#2). It is expected that the correction factor for adjusting abundance estimates by the normal 
closing mode is less than 1, and it is possible to let the data tell if it is the case or not. But, in Run#3, we 
assumes R=1 instead of use of its estimate to know sensitivity to separation of survey modes (Run#7 is also 
related to correction factor). Run#4 is prepared to compare CVs in abundance estimates with/without 
consideration of additional variance. Run#5 is for generalization of regression models to allow interactions 
between blocks and period. Run#6 is to estimate the additional variance using abundance estimated only by 
the normal closing mode. This does not require any correction between the abeam and normal closing mode 
surveys. Run#8 aims at investigating the possibility to estimate additional variance based only on Past surveys. 
There are some replicates of surveys in some blocks during Past surveys, and hence it may be able to draw 
information on the additional variance. The additional variance is also estimated based on a count-based 
model to examine impact of ignoring “0” abundance estimates. Thus, a negative binomial model is used in 
Run#9. A more detailed description on the specification of the run sets is shown in Table 2.  
 
 
2.3 CLA abundance estimates in 1998-2002 period 
 
CLA abundance estimates of blocks, Sub-areas (IW, IE, and II), and the whole management Area were 
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provided. They were based only on estimates from the recent surveys (overseen). Abundance estimates from 
two different modes were combined using a correction factor, which was re-estimated based only on the data 
from the recent surveys. Furthermore, the additional variance was taken into account in their associated CVs. 
This is a different way from that in Shimada et al.(2007), where posterior means of “block-effects” in REML 
in the integrated model for the estimation of additional variance were used for abundance estimates for blocks 
although these depends on abundance estimates of the past surveys. The reason why we take the procedure 
below is not to use the abundance estimates in the past surveys, which were not overseen by IWC. Therefore, 
CLA abundance estimates in 1998-2002 depend on the data from Past surveys only in terms of their CVs. 
Statistical models and estimation procedures are described below. 
 
While the additional variance is estimated with the data from both the survey periods, abundance in the recent 
period themselves are estimated by only by making use of data from the recent survey overseen by IWC. For 
this purpose, we use a log-linear model again as follows: 
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*RNote that the meaning of the correction factor  is same as that in the previously illustrated integrated 

model but it is re-estimated with only the abundance estimates from the recent surveys. 
 
These are re-expressed again as a linear form as  
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where β  is a vector of the logarithm of abundances in blocks and correction factor, and all the other vectors 

and matrices are only for the recent period. Note that the additional CV, σ̂ , was estimated by the method 
above.  
 
The best unbiased estimator of β  is then given by  
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and its variance-covariance matrix is estimated as 
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where .  

 

Σ+= ˆ'ˆ)ˆ(ˆ 2 ZDZV σ

Then, an unbiased estimator of , which is a parameter vector of interest, is 

derived by exponential transformation of  with adjustment due to the log-normality of  as  
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and its variance-covariance matrix is given by 
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P̂ η̂ , and E is a where  is a diagonal matrix with diagonal components )1()1( +×+ AA  matrix with all the 

elements equal to 1. 
 
This procedure can be regarded as a sort of extension of Haw’s method (Haw 1991) when correlations 
between abundance estimates are taken into consideration. It should be noted that the vector of estimates η̂  
is unbiased and does not depend on the value of , which is estimated using abundance estimates from both 

the periods. Essentially, the correction factor R

2σ̂
* is estimated through the information on the differences of 

abundance estimates with the different modes within blocks, , where the terms of 

random effects are cancelled out, and therefore R

)()( ˆlogˆlog NC
a

AC
a NN −

* does not depend on . Furthermore, although each block 

effect in log-scale depends on the value of  due to the adjustment of the mean in , 

the exponential transformation with the adjustment in (18) also cancelled out such the effects. Hence, the 
abundance estimates in (18) do not depend on the value of the additional variance. Remark that 

2σ̂

)ˆ),ˆ(5.0(~ DDdiagN −ρ2σ̂

η̂  becomes 

the vector of the nominal abundance estimates  when only the abundance estimates by the 

abeam closing survey mode are used in the procedure, and then the variance-covariance matrix is also same as 
the nominal one if the random effects are ignored (i.e. ). 
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3. RESULTS AND DISCUSSION 
 
Table 3 shows results for Run#1 (the base cases, where the selected set of ESWs and MSSs was used in the 
underlying abundance estimates, Cases 1-4), Run#4(a) (No additional variance) and Run#5(a) (Case 5). Only 
the estimates of parameters of interest are provided in the table. AIC model selection indicated that Case 4 
(block-effect and period-latitude interaction) was the best model for the additional variance model. A notable 
thing is that the estimates of R and R* under Case 4 were almost same. This also imply that Case 4 in the 
additional variance model caught the actual distributional change to the north in Recent period (α=1.50, 
β1=-3,47, β2=-2.95). The observed and predicted log-abundances were plotted in Figure 2-(i). These graphs 
showed that the fitness in Cases 4 and 5 was better than that in other three cases although Case 5 seemed to 
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use parameters overly. The additional CV was estimated as 44.7%. This estimate was the smallest among the 
values in this runs though it indicated that a large amount of random distributional change occurred in the 
scale of blocks defined in this analysis. The CLA abundance estimates for the three sub-areas as well as the 
total area were also shown in the table. The incorporation of the additional variance increased more than about 
30% of CVs compared to those with no additional variance.  
 
Table 4 shows results for Run#2 (the base cases, where the secondary selected set of ESWs and MSSs was 
used in the underlying abundance estimates, Cases 1-4), Run#4(b) (No additional variance) and Run#5(b) 
(Case 5). This table also suggested that Case 4 was the best model for the additional variance model although 
the difference in AIC between Cases 4 and 5 was smaller than that in Run#1. This may be because the 
assumption of the common ESW and MSS masked the actual behaviors of abundance level. The estimates of 
the additional CVs were slightly different between Run#1 and Run#2 although those of R and R* were quite 
similar. A possible reason is that the CVs for the underlying abundance in Run#2 (ESW and MSS were 
common to sub-area) were originally smaller and therefore the total variances of the abundance estimates 
were more explained by the additional variance in Run#2 than in Run#1. This makes sense since the total 
variance in abundance estimates is essentially decomposed into of the sampling variance and the additional 
variance as described in the model. The difference of resultant CVs in CLA abundance estimates between 
Run#1 and Run#2 were about 10% for the sub-area and the whole area except for the case of no additional 
variance.  
 
Table 5 shows results of further sensitivity tests. Run#3 was conducted under the model of Case 4 to know 
sensitivity to separation of survey modes. The estimate of the additional CV was similar with that in Run#1 
although the values of the correction factor were different. This result showed robustness of the additional CV 
to the correction factor. Remark that, in Run#3 and Run#7, the estimation uncertainty of the correction factor 
was not taken into account in CVs in the final abundance estimates, and therefore their CVs were not 
comparable with those in other runs. In Run#6, which aimed at estimating the additional variance using data 
from only normal closing mode, the additional CV was estimated slightly greater than that in Run#1. This was 
the case for Run#8, where only abundance estimates from the past survey were employed. These results might 
have attributed to the fact that the numbers of data utilized in Run#6 and Run#8 were smaller than that in 
Run#1. This could have caused less precise estimates of the additional CV, which was reflected the larger 
standard errors (not CVs) in the estimates in Run#6 and Run#8.  
 
The results for Run#9 were shown in Table 6 and Figure 2-(ii). In this run, instead of assuming the 
log-normality of abundance estimates, negative binomial distributions were supposed for the block-wise 
counts of detected schools. This aimed at assessing the impact of ignoring the data with no sighting, which 
were eliminated from the data in runs other than Run#9. In this run, however, “0” data in the three blocks 
(1WW-M, 1WM-H, 1WM-M) were still eliminated because no sighting was made in those blocks through the 
whole two periods, and hence no information on the additional variance was drawn from those data. This run 
also selected Case 4 as the covariate for the additional variance model. Since the estimate of the additional 
CV in Case 4 was slightly larger than that in Run#1 (base case), CVs in the CLA abundance estimates were 
also slightly greater than those in the base case. In this analysis, counts were defined based on blocks because 
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leg-based efforts were not available in the past surveys (Shimada et al. 2008). The analysis by leg-based 
counts would be preferable to capture the variability in the counts between legs, and use of leg-based counts 
could decrease the difference in values of additional CV between Run#1 and Run#9.  
 
Throughout these nine runs, the additional CVs were estimated around 45% or greater, and these estimates 
resulted in the high uncertainty in the abundance estimates. However, these high CVs were partially explained 
by an estimate in block 1E-H in 1993 survey, which took considerably large value. If this abundance estimate 
was eliminated from the analyses in Case 4 in Run#1, the resultant additional CV was 0.334 (CV=54.8%). 
Hence, only this estimate caused 34% of greater additional CV compared to the one when eliminating this 
abundance estimate. In this case, CVs decreased from 39.8%, 49.8% and 55.3% to 35.1%, 43.9% and 49.9% 
for sub-area 1W, 1E and 2, respectively, and from 33.7% to 30.3% for the whole area. Of course, we do not 
have any reasons to exclude that estimate, while this demonstrated sensitivity in the estimation of additional 
variance to the data set utilized.  
 
Another sensitivity test (results not shown here) was conducted using underlying abundance estimates without 
making any correction of CVs in the past surveys to see the impact of the calibration. The calibration tended 
to increase the CVs in encounters (n/L) unless the number of detected schools was less than 4 (Shimada et al. 
2008), and this treatment was expected to decrease the estimate of additional CV because of the trade-off 
between sampling and process errors. In fact, the resultant estimates with no calibration were 0.660, 0.668, 
0.665, 0.521 and 0.664 for Cases 1-5, respectively. In Case 4, the case with the best covariates in our analyses, 
the value of 0.521 was greater than the value of 0.447 in Run#1 based on the corrected CVs while it was 
consistent with the value of 0.535 in Run#9, where no sampling CVs on the encounter rates were employed. 
In this sense, the results seemed to make sense.  
 
We have shown a number of results under the several run sets. We would consider the result in Case 4 in 
Run#1 the best, but the result in Case 4 in Run#9 could also be worth referring to the best. The latter used the 
information on all the counts data except for those in blocks where no sighting have been made in the two 
survey periods. As results, in Case 4 in Run#1, where the effective strip widths and mean school sizes were 
estimated by the sub-area and survey period and a log-normal mixed effect model was employed in the 
estimation of the process error, the estimated value of the additional coefficient of variation was 0.447 
(CV=43.1%). The abundance estimates in sub-areas 1W, 1E and 2 were 4,957 (CV=39.8%), 11,213 
(CV=49.8%) and 4,331 (CV=55.3%), respectively, and that in the whole area was 20,501 (CV=33.7%). The 
value of the additional coefficient of variation under a count-based model in Case 4 in Run#9 was 0.535 
(CV=50.2%) and was greater than the above value, which implied that the resultant CVs in abundance 
estimates were also higher than those in the log-normal model; CV=43.9%, 55.1%, 60.0% and 36.6% for 
sub-areas 1W, 1E and 2, and the whole area, respectively. The correlation matrices for the abundance 
estimates in blocks and the correction factor in these two results were shown in Table 7. The positive 
correlations between abundance estimates were made through the common ESWs and MSSs in the same 
sub-areas as well as the common correction factor (R*). The negative correlations between the abundance 
estimates and R* were consistent with the fact that larger value of R* leads to smaller values of the abundance 
estimates. For reference to illustrate how the additional CV gives an impact on the uncertainty in abundances, 
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graphs for CVs in abundance estimates for different values of the additional CV were also shown in Figure 3.  
 
The analyses here were based on blocks defined in the recent surveys. In the recent surveys, multiple blocks 
(2 or 3) were simultaneously covered in each of five years (i.e.; 1WW, 1WM, 1WE, 1E and 2), and therefore 
the analyses could have been done based on these five strata. However, this was not the case in the past survey. 
If those strata were applied for the estimation of the additional variance, less numbers of abundance estimates 
could have been used. This is a matter of planning of surveys, but this warrant that the future survey, if it will 
be conducted, should be planned to cover, in a single year, the blocks surveyed in a single year in the 
1998-2002 surveys.  
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Table 1. Summary of underlying abundance estimates and their CVs in parentheses, school counts and survey 
efforts.  
Blocks 1WW-M, 1WM-H and 1WM-M were excluded from the all the analyses because no detections have been 
made throughout the years.  
 
(a) Abundance estimates (upper) and CVs (lower, %) under the assumption that both the ESW and MSS were 

stratified by the sub-area and survey period (the best case) 
 
Year/Block 1WW-M 1WW-L 1WM-H 1WM-M 1WM-L 1WE-H 1WE-M 1WE-L 1E-H 1E-M 1E-L 2-H 2-M

Latitude 25ﾟN-35ﾟ 10ﾟN-25ﾟN 35ﾟN-43ﾟN 25ﾟN-35ﾟN 10ﾟN-25ﾟN 31ﾟN-43ﾟN 20ﾟN-31ﾟN 10ﾟN-20ﾟN 32ﾟN-43ﾟN 20ﾟN-32ﾟN 10ﾟN-20ﾟN 35ﾟN-43ﾟN 25ﾟN-35ﾟN

Longitude 130ﾟB-137ﾟ30'E 130ﾟB-137ﾟ30'E 137ﾟ30'E-145ﾟE 137ﾟ30'E-145ﾟE 137ﾟ30'E-145ﾟE 145ﾟE-165ﾟE 145ﾟE-165ﾟE 145ﾟE-165ﾟE 165ﾟE-180ﾟ 165ﾟE-180ﾟ 165ﾟE-180ﾟ 180ﾟ-155W 180ﾟ-155W

Area （nm２
） 188,870 385,344 81,960 233,552 384,389 692,020 663,632 692,984 309,600 581,514 519,738 289,250 778,545

1988 1,369 1,006 1,589
52.96 57.83 59.53

1989 1,929 1,012 4,337 1,454 306 1,559
47.85 50.67 57.87 65.84 78.28 90.30

1990 1,100 806 1,510 2,854 398 757
76.37 55.73 46.52 52.53 72.00 120.37

1991 0

1992 0 0 2,131
44.97

1993 2,132 792 3,531 3,450 3,002 13,634 7,132 622
58.12 56.27 128.05 53.48 71.14 74.27 130.87 74.28

1994

1995 0

1996 3,470
45.06

1998 3,635 1,624 160
73.06 52.90 111.48

1999 3,186 8,889 289
56.63 73.56 110.70

2000 0 0 222
105.74

2001 0 348
88.08

2002 1,656 1,752
56.49 83.96

1998 705 3,026 449
40.02 48.71 57.43

1999 3,128 5,580 253
35.00 49.58 63.66

2000 0 0 474
70.79

2001 0 0

2002 1,598 2,433
74.31 55.25

Past surveys (Normal closing)

Recent surveys (Abeam closing)

Recent surveys (Normal closing)
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(b) Abundance estimates (upper) and CVs (lower, %) under the assumption that both the ESW and MSS were 

stratified by only the survey period (alternative case)  
 
Year/Block 1WW-M 1WW-L 1WM-H 1WM-M 1WM-L 1WE-H 1WE-M 1WE-L 1E-H 1E-M 1E-L 2-H 2-M

Latitude 25ﾟN-35ﾟ 10ﾟN-25ﾟN 35ﾟN-43ﾟN 25ﾟN-35ﾟN 10ﾟN-25ﾟN 31ﾟN-43ﾟN 20ﾟN-31ﾟN 10ﾟN-20ﾟN 32ﾟN-43ﾟN 20ﾟN-32ﾟN 10ﾟN-20ﾟN 35ﾟN-43ﾟN 25ﾟN-35ﾟN

Longitude 130ﾟB-137ﾟ30'E 130ﾟB-137ﾟ30'E 137ﾟ30'E-145ﾟE 137ﾟ30'E-145ﾟE 137ﾟ30'E-145ﾟE 145ﾟE-165ﾟE 145ﾟE-165ﾟE 145ﾟE-165ﾟE 165ﾟE-180ﾟ 165ﾟE-180ﾟ 165ﾟE-180ﾟ 180ﾟ-155W 180ﾟ-155W

Area （nm２
） 188,870 385,344 81,960 233,552 384,389 692,020 663,632 692,984 309,600 581,514 519,738 289,250 778,545

1988 1,726 676 1,167
52.87 56.49 43.71

1989 2,433 1,277 2,913 977 225 1,145
47.75 50.57 56.53 64.67 67.05 80.75

1990 1,387 1,016 1,014 1,917 292 556
76.30 55.64 44.85 51.06 59.60 113.39

1991 0

1992 0 0 2,687
44.86

1993 2,688 999 4,451 4,350 3,785 9,158 4,791 418
58.04 56.18 128.02 53.39 71.07 73.23 130.29 73.24

1994

1995 0

1996 4,375
44.95

1998 3,851 1,721 169
72.84 52.59 111.33

1999 3,254 9,078 295
56.08 73.14 110.80

2000 0 0 235
105.59

2001 0 369
87.90

2002 973 1,030
50.44 80.01

1998 747 3,205 475
41.63 48.38 57.15

1999 3,194 5,699 258
34.11 48.95 63.18

2000 0 0 502
70.56

2001 0 0

2002 939 1,430
69.82 49.04

Recent surveys (Abeam closing)

Recent surveys (Normal closing)
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(c) Observed school counts and associated efforts (nm) used in a count-based model. 
 
Year/Block 1WW-M 1WW-L 1WM-H 1WM-M 1WM-L 1WE-H 1WE-M 1WE-L 1E-H 1E-M 1E-L 2-H 2-M

Latitude 25ﾟN-35ﾟ 10ﾟN-25ﾟN 35ﾟN-43ﾟN 25ﾟN-35ﾟN 10ﾟN-25ﾟN 31ﾟN-43ﾟN 20ﾟN-31ﾟN 10ﾟN-20ﾟN 32ﾟN-43ﾟN 20ﾟN-32ﾟN 10ﾟN-20ﾟN 35ﾟN-43ﾟN 25ﾟN-35ﾟN

Longitude 130ﾟB-137ﾟ30'E 130ﾟB-137ﾟ30'E 137ﾟ30'E-145ﾟE 137ﾟ30'E-145ﾟE 137ﾟ30'E-145ﾟE 145ﾟE-165ﾟE 145ﾟE-165ﾟE 145ﾟE-165ﾟE 165ﾟE-180ﾟ 165ﾟE-180ﾟ 165ﾟE-180ﾟ 180ﾟ-155W 180ﾟ-155W

Area （nm２
） 188,870 385,344 81,960 233,552 384,389 692,020 663,632 692,984 309,600 581,514 519,738 289,250 778,545

1988 21 6 10
4,948 1,616 1,457

1989 25 7 33 3 2 5
4,181 2,139 2,062 1,050 1,513 1,999

1990 13 2 9 9 1
3,813 768 1,615 1,605 582 1,646

1991 0
3,157

1992 0 0 37
2,233 2,243 5,601

1993 10 5 14 11 17 38 12 3
843 1,131 1,279 987 1,830 755 856 2,194

1994

1995 0
2,261

1996 14
1,304

1998 22 12 1
1,431 1,676 1,487

1999 34 66 1
1,171 1,531 637

2000 0 0 2
230 122 1,185

2001 0 2
111 756

2002 6 4
646 1,095

1998 3 21 2
1,006 1,574 1,056

1999 29 31 1
1,018 1,145 729

2000 0 0 4
81 94 1,109

2001 0 0
153 1,125

2002 5 5
558 986

Past surveys (Normal closing)

Recent surveys (Abeam closing)

Recent surveys (Normal closing)

2
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Table 2. Specification of run sets for the estimation of the additional variance (AV) and CLA abundance in 
1998-2002. Runs#1-8 given here correspond to those in Appendix 8 of SC59 Report ANNEX D, and Run#9 was added by 
following its suggestion. AV is estimated using data from Past period surveys (1988-1996) as well as Recent ones (1998-2002). 
Meanwhile, the point estimates of abundances in 1998-2002 are finally provided based only on data from Recent surveys, which 
was subject to IWC oversight, by making a correction of difference between the abeam and normal closing surveys. Therefore, the 
abundance estimates in 1998-2002 depend on the data from Past surveys in terms of their CVs. Remark that the correction 
factor was estimated twice separately in two estimation stages.  

Run # AV Data included in the
estimation of AV

Error model
for AV

Covariates in the
estimation of  AV

R in the estimation
of AV (Eq.1) ESW / MSS

R* in the estimation of
abundance in 1998-2002

(Eq.14)

1 Estimated Past(NC) and Recent(AC&NC) LN Case1-4
(selected by AIC) Estimated By Sub-area Estimated 

2 Estimated Past(NC) and Recent(AC&NC) LN Case1-4
(selected by AIC) Estimated Common Estimated 

3 Estimated Past(NC) and Recent(AC&NC) LN Selected in Run#1 Fixed at 1 By Sub-area Fixed at 1

4 N/A - - - - (a) By Sub-area
(b)  Common Estimated 

5 Estimated Past(NC) and Recent(AC&NC) LN Case5 Estimated (a) By Sub-area
(b)  Common Estimated 

6 Estimated Past(NC) and Recent(NC) LN Selected in Run#1 N/A By Sub-area Estimated 

7 Estimated Past(NC) and Recent(AC&NC) LN Selected in Run#1 Estimated By Sub-area Fixed at the estimate in
AV model

8 Estimated Past(NC) LN Case1 N/A By Sub-area Estimated 

9 Estimated Past(NC) and Recent(AC&NC) NB Case1-5
(selected by AIC) Estimated By Sub-area Estimated 

Characterization of Run sets

Data included in the estimation of additional variance

Error model for the estimation of additional variance

Covariates in the estimation of additional variance
Case1: Block-effect
Case2: Block-effect and exponential trend
Case3: Block-effect and Period-effect
Case4: Block-effect and Period-Latitude interaction
Case5: Block-effect and Period-block interaction

ESW / mean school size (MSS)

LN: the vector of logarithms of abundance estimates is assumed to be distributed to a multivariate normal distribution

Models with no covariates were secondarily selected in each period for each of ESW and MSS, and hence these were used in Run#2 as a
sensitivity test.

NB: the numbers of detected schools given efforts, ESW and MSS are assumed to be independently distributed to negative distributions

Both the ESW and MSS were estimated by period. Sub-area was selected as a covariate for both the ESW and MSS in both the periods.

Run#1: Base scenario (based on the selected set of ESWs and mean school sizes)
Run#2: To know sensitivity to a different set of ESWs and mean school sizes)
Run#3: To know sensitivity to separation of survey modes

Run#7: To examine the impact of use of different estimates of the correction factor "R"

Run#4: To compare CVs in abundance estimates with/without consideration of additional variance
Run#5: For  a generalized case of Case 4 (see below) to allow interactions between blocks and period
Run#6: To estimate the additional variance using data from only  normal closing mode, where no correction factor is necessary

Abeam Closing (AC)=closing starts after abeam of a school detected (conducted only in 1998-2002 surveys)
Normal Closing (NC)=closing starts soon after detection of a school (conducted in both of Past (1988-1996) and Recent (1998-2002) surveys)
Remark that the point estimates of abundances in Recent survey period for CLA purpose are estimated based only on the Recent surveys.

Run#8: To investigate the possibility to estimate additional variance based only on Past period surveys
Run#9: To assess the impact of ignoring the data with no sighting
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Table 3: Results on the abundance estimates and their associated CVs under Run #1, #4(a) and #5(a).  
Run#1 is the base cases, where the selected set of ESW and MSS was used in the underlying abundance estimates. “No additional 

variance” and “Case 5” correspond to Run #4(a) and #5(b), respectively. The estimation was done by two stages: the estimation of 

the additional CV, and then the estimation of abundance in 1998-2002. In the former stage, the additional CV was estimated using 

the data from Past and Recent surveys by the REML method. AIC was defined by the likelihood of the additional variance model. 

Meanwhile, the point estimates of abundances in 1998-2002 in the latter stage were estimated based only on the data from Recent 

surveys although their CVs depends on the values of additional CVs estimated in the former stage. Case 4 (Block-effect and 

Period-Latitude interaction) was selected as a covariate set for the additional variance model. 

 
No additional variance      Case 1      Case 2      Case 3      Case 4      Case5

Parameter estimates and AIC in additional variance model
Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%)

R 0.953 24.85 1.004 26.17 0.891 26.17 0.868 26.07 0.892 26.55
Additional CV 0.627 31.44 0.638 31.94 0.641 31.47 0.447 43.09 0.588 43.48

AIC 21.58 22.84 22.75 12.58 * 19.68

Abundance in 1998-2002 survey period
Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%)

R* 0.861 27.02 0.861 27.02 0.861 27.02 0.861 27.02 0.861 27.02 0.861 27.02
Block 1WW-L 348 88.08 348 121.39 348 122.40 348 122.72 348 106.32 348 117.90
Block 1WM-L 439 58.81 439 93.52 439 94.52 439 94.83 439 78.40 439 90.08
Block 1WE-H 1238 41.46 1238 79.52 1238 80.54 1238 80.86 1238 63.71 1238 75.97
Block 1WE-M 2525 38.57 2525 77.46 2525 78.49 2525 78.81 2525 61.49 2525 73.89
Block 1WE-L 407 53.61 407 89.06 407 90.06 407 90.38 407 73.79 407 85.60
Block 1E-H 3480 36.10 3480 75.79 3480 76.82 3480 77.14 3480 59.67 3480 72.20
Block 1E-M 7418 44.69 7418 81.92 7418 82.93 7418 83.25 7418 66.28 7418 78.40
Block 1E-L 315 56.65 315 91.64 315 92.64 315 92.96 315 76.46 315 88.19

Block 2-H 1813 48.41 1813 84.81 1813 85.82 1813 86.13 1813 69.34 1813 81.32
Block 2-M 2518 52.25 2518 87.93 2518 88.93 2518 89.25 2518 72.61 2518 84.46

Sub-area 1W 4957 28.03 4957 48.51 4957 49.08 4957 49.26 4957 39.78 4957 46.54
Sub-area 1E 11213 34.86 11213 60.91 11213 61.63 11213 61.86 11213 49.83 11213 58.41
Sub-area 2 4331 42.01 4331 65.61 4331 66.30 4331 66.51 4331 55.28 4331 63.26

Total 20501 25.49 20501 40.01 20501 40.43 20501 40.56 20501 33.66 20501 38.56

Correlation between abundance estimates 

SA 1E SA 2 SA 1E SA 2 SA 1E SA 2 SA 1E SA 2 SA 1E SA 2 SA 1E SA 2
Sub-area 1W 0.289 0.195 0.095 0.072 0.093 0.070 0.093 0.070 0.142 0.105 0.103 0.078
Sub-area 1E 1 0.187 1 0.068 1 0.067 1 0.067 1 0.099 1 0.074
Sub-area 2 1 1 1 1 1 1  
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Table 4: Results on the abundance estimates and their associated CVs under Run #2, #4(b) and #5(b).  
This table shows results under an alternative of Table 3 when another set of ESW and MSS were used. As in the Table 3, Case 4 

(Block-effect and Period-Latitude interaction) was selected as a covariate set for the additional variance model.  

 
No additional variance      Case 1      Case 2      Case 3      Case 4      Case5

Parameter estimates and AIC in additional variance model
Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%)

R 0.943 25.10 1.007 26.44 0.897 26.40 0.881 26.29 0.889 26.75
Additional CV 0.720 28.79 0.716 29.92 0.746 28.90 0.533 35.87 0.572 45.25

AIC 26.27 26.99 27.91 17.90 * 18.45

Abundance in 1998-2002 survey period
Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%)

R* 0.858 27.23 0.858 27.23 0.858 27.23 0.858 27.23 0.858 27.23 0.858 27.23
Block 1WW-L 369 87.90 369 130.06 369 129.70 369 132.66 369 112.97 369 116.33
Block 1WM-L 466 58.57 466 101.94 466 101.60 466 104.45 466 85.12 466 88.48
Block 1WE-H 1314 41.13 1314 88.04 1314 87.70 1314 90.57 1314 70.80 1314 74.30
Block 1WE-M 2679 38.18 2679 86.00 2679 85.66 2679 88.54 2679 68.65 2679 72.18
Block 1WE-L 432 53.36 432 97.50 432 97.16 432 100.01 432 80.60 432 84.00
Block 1E-H 3561 35.29 3561 84.11 3561 83.76 3561 86.65 3561 66.63 3561 70.20
Block 1E-M 7592 44.03 7592 90.15 7592 89.80 7592 92.67 7592 73.01 7592 76.48
Block 1E-L 322 56.18 322 99.88 322 99.54 322 102.39 322 83.03 322 86.40

Block 2-H 1071 41.07 1071 88.00 1071 87.65 1071 90.53 1071 70.76 1071 74.26
Block 2-M 1488 45.36 1488 91.15 1488 90.80 1488 93.67 1488 74.05 1488 77.50

Sub-area 1W 5260 27.51 5260 53.10 5260 52.91 5260 54.53 5260 43.45 5260 45.39
Sub-area 1E 11475 34.01 11475 66.57 11475 66.33 11475 68.38 11475 54.33 11475 56.80
Sub-area 2 2558 33.22 2558 65.40 2558 65.16 2558 67.19 2558 53.32 2558 55.76

Total 19293 25.80 19293 45.09 19293 44.94 19293 46.21 19293 37.62 19293 39.11

Correlation between abundance estimates 

SA 1E SA 2 SA 1E SA 2 SA 1E SA 2 SA 1E SA 2 SA 1E SA 2 SA 1E SA 2
Sub-area 1W 0.359 0.308 0.095 0.081 0.096 0.082 0.090 0.077 0.142 0.122 0.130 0.111
Sub-area 1E 1 0.289 1 0.075 1 0.076 1 0.071 1 0.113 1 0.103
Sub-area 2 1 1 1 1 1 1  
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Table 5: Results on the abundance estimates and their associated CVs under Run #3, #6, #7 and #8.  
Run#3 was conducted to know sensitivity to separation of survey modes. Run#6 aimed at estimating the additional variance using 

data from only normal closing mode, where no correction factor is necessary. Also, Run#7 was to examine the impact of use of 

different estimates of the correction factor in the final abundance estimates. In Run#8, only abundance estimates from Past survey 

were employed, and therefore Case 1, where only block-effects were considered, was assumed as the covariates. The other three 

runs were based on Case 4, which was selected through Run#1 and Run#5. Remark that, in Run#3 and Run#7, the estimation 

uncertainty of the correction factor was not taken into account in CVs in the final abundance estimates, and therefore their CVs 

were not comparable with those in other runs.  

 
Run#3 Run#6 Run#7 Run#8

Parameter estimates and AIC in additional variance model
Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%)

R 1 - - - 0.868 22.64 - -
Additional CV 0.450 42.75 0.503 40.22 0.447 43.10 0.588 43.48

Abundance in 1998-2002 survey period
Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%)

R* 1 - 0.861 27.02 0.868 0 0.861 27.02
Block 1WW-L 348 106.55 348 110.72 348 106.32 348 117.90
Block 1WM-L 439 75.55 439 82.89 439 75.31 439 90.08
Block 1WE-H 1238 59.76 1238 68.48 1238 59.49 1238 75.97
Block 1WE-M 2525 59.45 2525 66.32 2525 59.18 2525 73.89
Block 1WE-L 407 69.93 407 78.34 407 69.68 407 85.60
Block 1E-H 3480 55.73 3480 64.56 3480 55.46 3480 72.20
Block 1E-M 7418 63.07 7418 70.98 7418 62.82 7418 78.40
Block 1E-L 315 73.05 315 80.98 315 72.80 315 88.19

Block 2-H 1813 68.61 1813 73.98 1813 68.36 1813 81.32
Block 2-M 2518 69.19 2518 77.18 2518 68.94 2518 84.46

Sub-area 1W 4957 36.44 4957 42.40 4957 36.21 4957 46.54
Sub-area 1E 11213 45.81 11213 53.14 11213 45.56 11213 58.40
Sub-area 2 4331 52.66 4331 58.35 4331 52.64 4331 63.25

Total 20501 28.74 20501 35.54 20501 28.70 20501 38.56

Correlation between abundance estimates 

SA 1E SA 2 SA 1E SA 2 SA 1E SA 2 SA 1E SA 2
Sub-area 1W 0 0 0.125 0.093 0 0 0.104 0.078
Sub-area 1E 1 0 1 0.088 1 0 1 0.074
Sub-area 2 1 1 1 1  
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Table 6: Results on the abundance estimates and their associated CVs under Run #9 
In this run, instead of assuming the log-normality of abundance estimates, negative binomial distributions were supposed for the 

block-wise counts of detected schools. This aimed at assessing the impact of ignoring the data with no sighting, which were 

eliminated from the data in runs other than Run#9. In this run, however, “0” data in the three blocks (1WW-M, 1WM-H, 1WM-M) 

were still eliminated because no sighting were made in those blocks through the whole two periods, and hence no information on 

the additional variance was drawn from those data. The method for providing the abundance in 1998-2002 was same as other runs. 

This run also selected Case 4 as the covariate for the additional variance model. Since the estimate of the additional CV in Case 4 

was larger than that in Run#1 (base case), CVs in the final estimates were also greater than those in the base case. 

 
     Case 1      Case 2      Case 3      Case 4      Case5

Parameter estimates and AIC in additional variance model
Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%)

R 0.929 23.65 0.979 26.05 0.871 25.15 0.875 26.75 0.873 25.19
Additional CV 0.778 34.12 0.789 34.84 0.784 35.17 0.535 50.24 0.719 41.82

AIC 257.0 258.3 258.2 248.2 * 255.0

Abundance in 1998-2002 survey period
Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%) Estimate CV(%)

R* 0.861 27.02 0.861 27.02 0.861 27.02 0.861 27.02 0.861 27.02
Block 1WW-L 348 136.09 348 137.16 348 136.67 348 113.30 348 130.16
Block 1WM-L 439 107.77 439 108.80 439 108.33 439 85.49 439 102.07
Block 1WE-H 1238 93.92 1238 94.95 1238 94.48 1238 71.21 1238 88.20
Block 1WE-M 2525 91.92 2525 92.95 2525 92.48 2525 69.08 2525 86.18
Block 1WE-L 407 103.32 407 104.35 407 103.88 407 80.97 407 97.63
Block 1E-H 3480 90.29 3480 91.32 3480 90.85 3480 67.35 3480 84.55
Block 1E-M 7418 96.27 7418 97.29 7418 96.83 7418 73.68 7418 90.56
Block 1E-L 315 105.90 315 106.92 315 106.46 315 83.59 315 100.20

Block 2-H 1813 99.11 1813 100.14 1813 99.67 1813 76.64 1813 93.41
Block 2-M 2518 102.20 2518 103.23 2518 102.76 2518 79.82 2518 96.50

Sub-area 1W 4957 56.60 4957 57.19 4957 56.92 4957 43.90 4957 53.38
Sub-area 1E 11213 71.16 11213 71.89 11213 71.56 11213 55.06 11213 67.07
Sub-area 2 4331 75.39 4331 76.10 4331 75.77 4331 60.12 4331 71.47

Total 20501 46.01 20501 46.44 20501 46.25 20501 36.63 20501 43.61

Correlation between abundance estimates 

SA 1E SA 2 SA 1E SA 2 SA 1E SA 2 SA 1E SA 2 SA 1E SA 2
Sub-area 1W 0.095 0.072 0.093 0.070 0.093 0.070 0.142 0.105 0.103 0.078
Sub-area 1E 1 0.068 1 0.067 1 0.067 1 0.099 1 0.074
Sub-area 2 1 1 1 1 1  
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Table 7. Correlation matrices among the final estimates of the abundance in blocks and the correction factor.  
Correlations were made through the common ESWs and MSSs in the same sub-areas as well as the common 
correction factor (R*). Remark that the abundance in 1WW-L and those in blocks in sub-areas 1E and II were not 
correlated because the schools were detected in 1WW-L only by the abeam closing mode, and therefore the 
abundance was solely estimated by the underlying abundance estimate by the abeam closing mode (therefore no 
correction factor was used for this estimate). 
 
Case 4 in Run#1  
 

 1WW-L  1WM-L  1WE-H  1WE-M  1WE-L  1E-H  1E-M 1E-L  2-H  2-M R*
 1WW-L 1
 1WM-L 0.007 1
 1WE-H 0.008 0.052 1
 1WE-M 0.008 0.042 0.054 1
 1WE-L 0.007 0.047 0.061 0.049 1
 1E-H 0.000 0.043 0.057 0.043 0.052 1
 1E-M 0.000 0.037 0.049 0.037 0.045 0.067 1
1E-L 0.000 0.035 0.046 0.035 0.042 0.063 0.055 1
 2-H 0.000 0.019 0.025 0.019 0.023 0.026 0.023 0.021 1
 2-M 0.000 0.037 0.048 0.036 0.044 0.049 0.043 0.040 0.109 1
R* 0.000 -0.170 -0.223 -0.169 -0.203 -0.229 -0.199 -0.188 -0.105 -0.194 1  
 
 
Case 4 in Run#9  
 

 1WW-L  1WM-L  1WE-H  1WE-M  1WE-L  1E-H  1E-M 1E-L  2-H  2-M R*
 1WW-L 1
 1WM-L 0.006 1
 1WE-H 0.007 0.046 1
 1WE-M 0.007 0.037 0.047 1
 1WE-L 0.006 0.042 0.054 0.043 1
 1E-H 0.000 0.038 0.049 0.037 0.045 1
 1E-M 0.000 0.033 0.043 0.032 0.039 0.058 1
1E-L 0.000 0.031 0.041 0.031 0.038 0.055 0.049 1
 2-H 0.000 0.017 0.022 0.017 0.020 0.023 0.020 0.019 1
 2-M 0.000 0.032 0.042 0.032 0.039 0.043 0.037 0.036 0.096 1
R* 0.000 -0.161 -0.208 -0.158 -0.191 -0.213 -0.186 -0.177 -0.098 -0.183 1  
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Figure 1. A map of the sub-areas and blocks used for the abundance estimation. “H”, “M” and “L” mean high, middle 
and low latitudes. The northern parts (shaded) in the two blocks, 1E-H and 2-H, were excluded from the estimation of 
abuncances, which means any detections and efforts in those parts were not included in the analyses and the 
abundance estimates in those blocks were calculated for the southern parts of 1E-H and 2-H. A more detailed 
explanation is given in Shimada et al. (2008) 
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(i) Run #1 and #5(a) (Cases 1-5) 

 
(ii) Run #9 (Cases 1-5) 

 
Figure 2. Observed and predicted values for Run #1 and Run #5(a) (Cases 1-5) and Run#9 (Cases 1-5); circles for the 
past surveys and asterisks for the recent surveys. 
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Figure 3. Plots of CVs in abundance estimates against the value of the additional CV.  

 25



 

Appendix: Replies to “SUGGESTIONS FOR ADDITIONAL ANALYSES/DOCUMENTATION RELATED TO 
THE ESTIMATION OF ABUNDANCE FOR THE WESTERN NORTH PACIFIC BRYDE’S WHALES” in 
Appendix 8 in Annex D in SC59 report.  
 
1) Passing versus closing mode 
 
a. The estimates of closing/passing mode density estimates of R~0.92-0.97 in the integrated analyses are difficult to 
reconcile with the differences in the overall sighting rates between passing and closing mode (i.e. n/l in passing mode 
is 1.51 larger than n/l in closing mode), especially given that common esw and school size estimates are used in the 
integrated analyses. This requires examination to provide some explanation. (Extracted from Annex D) 
 

Under the data set revised in Shimada et al. (2008), the differences in the overall sighting rates between passing 
and closing mode was 1.308. The reciprocal of this value, 0.765, was slightly different from the estimate R* in 
Case 4 in Run#1 (around 0.86). However, the value R* was estimated with taking the difference in sampling 
CVs among blocks into account, and therefore it was essentially assessed as weighted mean. So, these two 
values were comparable but slightly different.  

 
b. Provide an estimate of R based on the data from the 1998-2002 surveys alone and compare it with those from 
“integrated” analysis. (Extracted from Annex D) 
 

In Case 4 in Run#1, where the model captured the behavior of the data well, the values of R in the integrated 
model and R* estimated based only on the recent surveys were almost same (R=0.868 and R*=0.861). This was 
because in this case the information on these correction factors were drawn from the difference in the underlying 
abundance estimates between two survey modes (abeam and normal closing) in “the recent surveys”. By way of 
comparison , for example in Case 1, where abundance levels were assumed to be same between the two survey 
periods, this was not the case (R=0.953 and R*=0.861) because the abundance estimates in the past surveys 
contributed to the estimation of fixed block-effects. Anyway, in out selected cases, no clear differences were 
observed between the two correction factors.  

 
2) The random effects approach to estimating abundance / alternative analyses  
 
a. Table 1 (in Appendix 8 in Annex D) lists the current set of models, and an alternative model (case 5) that 
generalizes case 4 to allow for interactions between block and period. It also include a series of alternative additional 
analyses to allow an examination of: (a) whether the inclusion of the 1988-96 data impact the point estimates of 
abundance for 1998-2002, (b) the impact of fixing rather than estimating R, (c) the impact of basing the analyses on 
closing mode data only (because there are no data for passing mode for the years 1988-96), and (d) allowing esw and 
mean school size to differ among areas (i.e. in the context of SC/59/PF3 Small Areas). (Extracted from Annex D) 
 
b. There are blocks with some effort and no sightings for the 1988-96 period. The impact of ignoring the data for 
these blocks, particularly in terms of the impact of the extent of additional variance, should be more fully examined 
and documented in the final report. Analyses which involve delta-log-normal models or an error model (such as the 
negative binomial) which allows for zero observations should provide information on this. (Extracted from Annex D) 
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The nine of run sets shown in Table 2 in our paper reflected these points.  
 
c. The process of calculating the variance-covariance matrix for the abundance estimates should be more fully 
documented. In particular, the procedure to take account of the covariance resulting from using a single pooled esw 
and mean school size estimate should be more fully documented. (Extracted from Annex D) 
 
d. Show the variance-covariance matrix (for the selected case) to be able to assess the correlation between R and the 
other parameters. (Extracted from Annex D) 
  

The formulas for assessing the variance-covariance matrix were provided in the text (e.g., (2), (3), (17) and (19)). 
Also, the actual matrices were given as the correlation matrices for selected cases in Table7.  
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