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ABSTRACT 

Photo-id data is broadly used for estimating 

animal abundance using capture-recapture 

models. The natural and acquired marks of 

the photographed individuals allow the 

construction of databases to be used for 

estimating the size N of an animal 

population. Animals that do not possess 

natural marks enough to allow re-

identification are called unmarked. Those 

individuals are uncatchable, and when a 

substantial part of the population is 

composed of such individuals, the classical 

models described in the literature do not 

apply. In this paper we present an empirical 

Bayes capture-recapture analysis for 

estimating the size of an animal population 

including uncatchable individuals. 

Considering a Gibbs sampling approach we 

obtain Monte Carlo estimates for the 

posterior distribution of N. 

 

1. INTRODUCTION 

 

Capture-recapture methods based on photo-id 

data are widely used for estimating 

abundance of marine mammals and other 

hard to tag species. Instead of artificially 

tagging the captured individuals, the natural 

and acquired marks of the photographed ones 

are used to build a matrix of their capture 

histories. This kind of data, i.e., the capture 

histories, are used in most of the capture-

recapture estimation processes. 

 

Animals whose extent of marks does not 

allow re-identification are called unmarked. 

Those individuals are uncatchable in the 

sense that they cannot be recognized. That 

violates a basic assumption of most capture-

recapture models which requires that every 

animal in the population be uniquely 

identifiable. 

 

The solution for the problem of estimating 

animal abundance in the presence of 

uncatchable individuals has been first 

attempted by Seber (1982), p. 72. Working 

with bottlenosed dolphin photo-id data, 

Williams et al. (1993) used Seber’s approach 

for obtaining an abundance estimate of that 

population. da Silva (1999) and da Silva et 

al. (2000) developed frequentist models 

allowing for heterogeneity in capture 

probabilities. The inferences were dealt with 

using parametric bootstrap methods. The 

methodology was applied to real and 

simulated bowhead whale (Balaena 

mysticetus) photo-id data. Their results had a 

good agreement with those obtained by 

Raftery and Zeh (1998) and Givens (1993) 

(personal communication) who used 

bowhead whale ice-based census data. 

Schweder (2003) developed alternative 

methodology to that of da Silva (1999) and 

da Silva et al. (2000). He applied his 

methods to the very same bowhead whale 

photo-id data used by those authors and 

obtained bowhead whale population 

inferences largely in agreement with the ones 

obtained by them. Working with Western 

Artic bowhead whales surveyed near Point 

Barrow, Alaska, George et al. (2004) used a 

method that consisted of computing 

abundance estimates from estimates N4 of 

the number of whales that passed within the 



 

4km visual range of the observation ‘perch’ 

from which the whales are counted, the 

estimated proportions P4 of the whales that 

passed within this range and the estimated 

standard errors (SE) of N4 and P4. Their 

2001 abundance estimate was 10,470 

(SE=1,351) with 95% confidence interval of 

8,100-13,500. Zeh and Punt (2005) reviewed 

the method of Cooke (1996) and Punt and 

Butterworth (1999) for computing abundance 

estimates for bowhead whales of the Bering-

Chukchi-Beaufort Seas stock based on N4 

and P4. Their 1985 and 1986 abundance 

estimates are also in agreement with the ones 

in da Silva et al. (2000).  

 

Bayesian estimation of population sizes N of 

demographically closed populations often 

depend upon the estimation of nuisance 

parameters such as capture probabilities at 

different occasions. Vague beta priors are 

usually assigned to those nuisance 

parameters in order to describe their posterior 

distributions. Using bowhead whale 

simulated data, da-Silva et al. (2003) 

observed that some choices of vague beta 

priors may cause substantial biases in the 

estimated values of N. For a variety of 

problems the pitfall of using vague priors is, 

according to Bernardo and Smith (1997), p. 

298, that “every prior specification has some 

informative posterior or predictive 

implications”. One approach to deal with this 

problem is to estimate the hyperparameters 

of the prior beta distributions using an 

empirical Bayes analysis. 

 

Huggins (2002) proposed an empirical Bayes 

analysis for estimating animal abundance for 

the case of heterogeneous capture 

probabilities. In this paper we present an 

empirical Bayes analysis for estimating the 

size of an animal population including 

uncatchable individuals with capture 

probabilities varying according to the 

sampling occasions. We consider a Gibbs 

sampling algorithm in order to obtain Monte 

Carlo estimates for the posterior distribution 

of N using both vague and empirical Bayes 

defined priors for the nuisance parameters. 

We compare the inferences about N obtained 

with these methods with the ones obtained by 

da-Silva et al (2003). In this last work the 

authors used the adaptive rejection sampling 

method (ARS) by Gilks and Wild (1992) for 

drawing samples from some nonstandard 

distributions. 

 

In Section 2 we introduce some notation. In 

Section 3 we restate a conditional likelihood 

for the problem established by da-Silva et al. 

(2003). In Section 4 we describe a Gibbs 

sampling algorithm for estimating the size of 

the whole bowhead whale population, N. In 

Section 5 we propose an empirical Bayes 

procedure to estimate the hyperparameters of 

a prior beta distribution. Using bowhead 

whale simulated data, in Section 6 we 

compare our inferences for N in a variety of 

ways. In Section 7 we present an application 

using actual bowhead data. Finally, in 

Section 8 we present some concluding 

remarks. 

 

2. NOTATION 

 

The photo-id data available for capture-

recapture estimation of animal abundance 

consists of the capture histories of the 

naturally marked individuals and some 

summary statistics related to the photos of an 

individual taken over the sampling occasions. 

In order to avoid biases caused by re-

identification errors, only good quality 

photos are used in the analysis. All good 

quality photos of the photographed 

individuals are used. However, only 

individuals who possess an acceptable extent 

of natural marks comprise what we call the 

population of the “marked individuals”. 

 

A capture means that a good quality photo of 

a whale was taken and, if a whale presents a 

non negligible extent of natural marks, it is 

considered marked. We now introduce some 

notation. 

• 

u
N : the total number of unmarked 

whales in the population. 

• 

m
N : the total number of marked 

whales in the population. 



 

• :
um

NNN += the total number of 

whales. 

• 

m

jX : the number of good photos of 

marked whales at occasion j, j = 1, . . 

. , t, where good photos are those for 

which the identification of the whales 

is possible. 

• 

u

jX : the number of good photos of 

unmarked whales at occasion j. 

• The total number of good photos at 

occasion j: .u

j

m

jj XXX +=  

• :jn the total number of marked 

whales captured at time j. 

• r: the number of different marked 

whales captured over the experiment. 

• ω : any subset of {1, . . . , t}. 

• ωu : the number of marked whales 

with history ω . We have that 
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• ( )tppp ,...,1= where  jp  is the 

capture probability at time j. 

 

 

 

3. A LIKELIHOOD BASED ON GOOD 

PHOTOS 

 

In da-Silva et al. (2003), the relationship 

between m
N and u

N  due to 
um

NNN +=  

was expressed in terms of 

 

,log
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 (3.1) 

 

which represents the log of the unknown 

fraction of the population sizes of 

uncatchable to catchable individuals in the 

population. Therefore the estimated size of 

the whole population was given by 

 

( )( ).ˆ1ˆˆ ∆+= expNN
m

 

 

The parameters m
N  and ∆  were estimated 

using a Bayesian procedure involving a 

conditional likelihood based on good photos 

which related a combination of Darroch’s 

model (1958) and a binomial model as 

follows, 
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(3.2) 

 

In expression (3.2), Darroch’s model 

accounts for the marked (catchable) part of 

the population, while the binomial term 

incorporates, through the number of good 

photos of unmarked (uncatchable) 

individuals, the information about the 

uncatchable part of the population. 

 

Using vague beta priors for the capture 

probabilities and the adaptive rejection 

sampling method (ARS) by Gilks and Wild 

(1992) for drawing values from the full 

conditional posterior distribution of ∆ , da-

Silva et. al. (2003) estimated N for real and 

simulated bowhead whale data. In that work, 

the full conditional posterior distributions of 

N and { }
i

p  were standard ones, that could be 

sampled without any difficulty. 

 

We realize that, for ecologists working with 

photo-id data, the ARS method described in 

da-Silva et. al. (2003) for drawing ∆  

samples may represent a major barrier to the 

use of the methodology suggested by those 

authors for estimating N. Therefore, in the 

next section we present an alternative way 

(the Gibbs sampling algorithm) for obtaining 

Monte Carlo estimates of the posterior 

distribution of N. This alternative is is both 

computationally friendlier and easier to grasp 

than the ARS. 

 

 



 

4. GIBBS SAMPLING FOR 

ESTIMATING N 

 

In this section we describe alternative 

methods to the ones proposed by da-Silva et 

al. (2003) for drawing samples from the joint 

posterior distribution of { }( )∆= ,,
i

m
pNθ . 

 

The Gibbs sampling is essentially a special 

case of the Metropolis-Hastings algorithm 

Metropolis et al. (1953); Hastings (1970)) 

which generates a Markov chain by sampling 

from full conditional distributions. Each 

iteration cycle of the Gibbs sampler gives an 

updated vector of the estimated values of θ . 

Each coordinate of θ  is sampled 

conditionally to the values of the other 

components. For a very large number of 

Gibbs sampling cycles, the sampled values of 

θ  are from the joint posterior distribution. 

The joint posterior is our target distribution. 

 

Let ( )
k

θθθ ,...,
1

=  be a k dimensional vector 

of unknowns, D a vector of observed data 

and ( )DP |θ be the corresponding joint 

posterior distribution. Let ( )
jj

DP
−

θθ ,|  be 

the full conditional distribution of 
j

θ , and 

j−
θ  denote the vector θ  with 

j
θ  removed. 

The following scheme illustrates the Gibbs 

sampling method for generating samples 

from ( )DP |θ , 

1. Choose starting values 
( ) ( )00

1
,...,

k
θθ ; 

2. Sample 

( )1

1

+jθ  from 

( ) ( )( )Dp
j

k

j
,,...,|

21
θθθ ; 

3. Sample 
( )1

2

+jθ  from 

( ) ( ) ( )( )Dp
j

k

jj
,,...,|

3

1

12
θθθθ +

; 

. . . 

4. Sample 
( )1+j

k
θ  from 

( ) ( ) ( )( )Dp
j

k

jj

k ,,...,| 1

1

1

2

1

1

+
−

++ θθθθ ; 

5. Repeat step 2 thousands of times. 

An extensive discussion about the Gibbs 

sampler can be found in Gelman et al. 

(1998). 

 

Returning to the whale problem, since N is 

expressed as a function of ∆  and 
m

N , its full 

conditional posterior distribution is estimated 

through the estimated values of those 

quantities. Expression (3.2) can be rewritten 

in terms of 
∆

+
=

e1

1
φ . Such 

reparametrization allows to describe an easy 

to sample full conditional posterior 

distribution forφ . 

Since 






 −
=∆

φ

φ1
log , for each updated 

value of φ  we can get the corresponding 

updated value of ∆ . The Gibbs procedure for 

generating samples from the joint posterior 

distribution of { }( )φθ ,,
i

m
pN= consists on 

drawing the θ  values through the following 

sequence of draws: 

 

In expression (4.3) independence is assumed. 

The values a, b, c and d are hyperparameters 

that will be either fixed in order to define 

vague priors for the { }
i

p  and φ , or estimated 

using an empirical Bayes approach that will 

be discussed in the next section. 

 

5. AN EMPIRICAL BAYES 

APPROACH 

 

In da-Silva et al. (2003), the vague priors 

beta(0, 0), beta(0.5, 0.5), and beta(1, 1) for 

the capture probabilities were considered in a 

simulation study aiming to assess the 
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sensitivity of the inferences for N to the 

choices of the beta hyperparameters (a, b). 

 

For inferences about N, the authors 

concluded that beta prior (0,0) causes 

positive bias while beta prior (1,1) causes 

negative bias. Vague beta prior (0.5, 0.5) 

seemed to be the best choice for the bowhead 

whale data. 

 

Inferences for N can possibly be improved 

with better choices of (a, b). In that sense 

consider an empirical Bayes approach which 

consists of describing a marginal distribution 

of a given random variable which is 

parametrized by a and b so that estimation of 

these parameters is possible. Thus consider a 

population with 
*

N  individuals and a model 

where capture probabilities vary only due to 

temporal effects. Again, for the bowhead 

whales, let 
m

NN =
*

. Also, let 
j

p  be the 

capture probability at sampling occasion j for 

individual i, 
*

,...,1 Ni =  and ,,...,1 tj =  and 

let 

• 

j
n be the sample size at sampling 

occasion j; 

• ( )
jjj

pNbinomialbapNn ,~,,,|
**

; 

• ( )babetabap
j

,~,| ;  

• ( ) ...,2,1,
1

*

*

*
== N

N
Nπ  

In order to find a distribution for 
j

n  given a 

and b only, i.e., ( )banP
j

,| , we integrate 

( )baNpnP
jj

,|,,
*

 with respect to 
j

p  and 

*
N : 
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In expression (5.1) the integrand represents a 

negative beta-binomial distribution with 

parameters a, b and 
j

n  for variable 
j

nN −
*

 

(See Bernardo and Smith (1997), p. 118). 

Therefore, 
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However, ( )banP
j

,|  does not depend on a 

and b. Therefore, we considered instead an 

iterative procedure to estimate a and b that 

we describe below. 

 

Let ( )baN ,,
*

=ψ  and ( )ψL , the likelihood 

associated to Ψ . Also consider that the sn
j

'
 

are iid and 
*

N  fixed so that 
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Iterative approach to estimate a and b: 

1. Initially consider 
( )

aa
o

= and 
( )

bb
o

= , 

where a and b are the parameters of a 

vague beta prior; 

2. Using 
( )1−k

a  and 
( )1−k

b  and  the 

Gibbs sampling discussed in Section 

4, obtain 
( )k

N
*

ˆ , for the estimated 

value of 
*

N . Here we use a point 

estimate for 
*

N  represented by the 

mean over the conditional posterior 

distribution. 

3. Replace 
( )k

N
*

ˆ  in equation (5.3) and 

obtain the maximum likelihood 

estimates 
( )k

â , and 
( )k

b̂ ; 

4. For K,1=k  return to step 2 until 

convergence of a and b. 



 

 

In the next section we present some analyses 

resulting from the application of the methods 

discussed in the previous sections to 

simulated data. 

 

6. SENSITIVITY OF THE 

INFERENCES FOR N 

 

In this section we are interested in studying 

the sensitivity of the inferences for N to 

choices of the beta priors.  

 

We worked with the same bowhead whale 

simulated datasets analysed by da-Silva et al. 

(2003). 

 

da Silva et al. (2000) generated bowhead 

whale data considering 5 scenarios (Cases) 

and 500 four occasion capture-recapture 

samples each.  

 

For all the Cases, a fixed population size of 

1,186 marked individuals was considered 

whereas the size of the unmarked population 

varied from moderate to high. Capture 

probabilities were set low or high.  

 

For brevity consider the events:  

 

C = closed population, S = small capture 

probabilities, U = High number of 8 

unmarked individuals in the population, 

where the complementary event of E is E .  

 

The five cases are the following:  

Case ( )USC ,,0= , Case 1 = ( )USC ,, , 

Case 2 = ( )USC ,, , Case 3 = ( )USC ,, , 

Case 4 = ( )USC ,, .  

 

Case 2 represents the most optimistic 

scenario where capture probabilities are high 

and the number of unmarked individuals is 

moderate.  

 

 

 

 

 

Table 1: Summary statistics for estimated 

values of N based on 500 bowhead whale 

simulated samples, Gibbs sampling approach 

and different values of a and b. These are the 

cases with relatively few unmarked 

individuals.  

 
Case Parameters Mean Bias Standard 

 a b c d   deviation 

0.0 0.0 6,845 113 773 

0.5 0.5 6,843 111 772 0 0.0 0.0 

1.0 1.0 6,842 110 771 

0.0 0.0 6,695 -37 730 

0.5 0.5 6,693 -40 729 0 0.5 0.5 

1.0 1.0 6,691 -41 729 

0.0 0.0 6,552 -179 693 

0.5 0.5 6,550 -182 692 0 1.0 1.0 

1.0 1.0 6,548 -184 692 

0 6.1 68.8 0.0 0.0 6,761 108 763 

0.0 0.0 6,902 167 848 

0.5 0.5 6,901 166 848 1 0.0 0.0 

1.0 1.0 6,898 164 848 

0.0 0.0 6,744 10 799 

0.5 0.5 6,743 9 800 1 0.5 0.5 

1.0 1.0 6,743 8 800 

0.0 0.0 6,596 -138 757 

0.5 0.5 6,594 -141 755 1 1.0 1.0 

1.0 1.0 6,592 -143 757 

1 5.4 62.9 0.0 0.0 6,903 169 840 

0.0 0.0 6,746 12 360 

0.5 0.5 6,745 11 360 2 0.0 0.0 

1.0 1.0 6,745 11 355 

0.0 0.0 6,721 -13 356 

0.5 0.5 6,720 -14 356 2 0.5 0.5 

1.0 1.0 6,720 -15 352 

0.0 0.0 6,697 -37 352 

0.5 0.5 6,696 -38 352 2 1.0 1.0 

1.0 1.0 6,695 -39 353 

2 5.5 28.4 0.0 0.0 6,744 23 362 

  

For the Gibbs sampling approach for 

estimating N discussed in Section 4, we 

defined 
∆

+
=

e1

1
φ , with ( )dcbeta ,~φ .  

 

Now it is important to evaluate whether or 

not inferences about N are sensitive not only 

to the choices of the values a and b of the 

beta prior for the 9 capture probabilities, but 

also to choices of the values of c and d. 

 

From Tables 1 and 2, we observe that 

inferences about N are sensitive to the 

choices of a and b. However, the inferences 

are not sensitive to the choices of c and d.  

 

Thus, any choice of the beta priors (beta(0, 

0), beta(1, 1) or beta(0.5, 0.5)) for φ  works 

equally well, i.e., none of them causes any 

remarkable bias in the estimated values of N. 

 

 

 



 

Table 2: Continuation of Table 1 - summary 

statistics for estimated values of N based on 

500 bowhead whale simulated samples, 

Gibbs sampling approach and different 

values of a and b. These are the cases with 

high numbers of unmarked individuals.  

 

 

For each Case and each of the 500 simulated 

samples, we estimated the respective values 

of (a, b) using the iterative empirical Bayes 

approach. The 10th line of each of the Cases 

in Tables 1 and 2 represents the average of 

those estimated values of (a, b). We observe 

that, for Cases 3 and 4, the inferences for N 

using the estimated (a, b) present very small 

biases. Actually, these biases were smaller 

than those yielded using vague beta(0.5,0.5). 

For Case 2, the choice of the values for a and 

b is not really an issue since the biases were 

all very close. 

 

For Cases 1 and 0, the biases for N using the 

estimated (a, b) were larger than the biases 

for N using beta(0.5,0.5). For Case 1, the bias 

yielded when the empirical Bayes method 

was applied was the largest one: bias = 169. 

Still, that represents only 2.5% of the true 

value of N. Again, for the Cases where 

sampling information about N is very 

imprecise due to unmarked whale excess in 

the population, the empirical Bayes approach 

described in Section 5 represented a useful 

option for minimizing biases in the 

inferences for N. Inferences for N obtained 

using the presented methods were very 

similar to those by da-Silva et al. (2003). 

 

7. ANALYSIS USING REAL 

BOWHEAD WHALE DATA 

 

The actual data for the bowhead whale 

consists of capture histories for four 

sampling occasions (spring 1985, summer 

1985, spring 1986, and summer 1986). Of the 

1,677 records in the data set, only 229 belong 

to marked individuals and, of those, only 16 

were captured more than once. That gives an 

idea of how sparse the bowhead whale data 

are. For more details about the real bowhead 

data see da Silva et al. (2000). 

 

The result of the application of the methods 

discussed in the previous sections are 

summarized in Table 3. For convenience, the 

inferences for N obtained by da-Silva et al. 

(2003) are also restated. Since in the last 

section we concluded that inferences for N 

are not sensitive to the values of the 

hyperparameters of the beta prior for φ  (see 

equation (4.1)), we only considered a vague 

beta prior beta(0, 0) for φ  in the Gibbs 

sampling calculations. 

 

As we can observe from Table 3, there exists 

a good agreement among the estimated 

values of N obtained using the two MCMC 

sampling methods for various choices of 

vague beta priors for the capture 

probabilities. 

 

da-Silva et al. (2003) estimated that the 

fraction NN u /  of unmarked individuals in 

the population was around 0.815, i.e., the 

majority of the individuals in the bowhead 

population does not possess any natural 

marks that could be used to uniquely identify 

the individuals. Therefore, according to our 

conclusions at the end of Section 6 for Cases 

3 and 4 (representing a large number of 

unmarked individuals in the population), for 

the actual bowhead whale data, the best 

choice for the hyperparameters a and b is 

obtained when using the empirical Bayes 

approach discussed in Section 5. 

 

Case Parameters Mean Bias Standard 

 a b c d   deviation 

0.0 0.0 13,574 106 1,711 

0.5 0.5 13,569 101 1,711 3 0.0 0.0 

1.0 1.0 13,563 95 1,711 

0.0 0.0 13,276 -192 1,616 

0.5 0.5 13,270 -198 1,617 3 0.5 0.5 

1.0 1.0 13,264 -204 1,615 

0.0 0.0 12,995 -473 1,530 

0.5 0.5 12,989 -479 1,531 3 1.0 1.0 

1.0 1.0 12,981 -487 1,529 

3 6.1 68.6 0.0 0.0 13,392 103 1,702 

0.0 0.0 14,716 1,248 4,931 

0.5 0.5 14,702 1,234 4,922 4 0.0 0.0 

1.0 1.0 14,685 1,217 4,908 

0.0 0.0 13,058 -410 3,532 

0.5 0.5 13,046 -422 3,528 4 
0.5 

 
0.5 

1.0 1.0 13,035 -433 3,529 

0.0 0.0 11,817 -1,651 2,736 

0.5 0.5 11,808 -1,660 2,734 4 1.0 1.0 

1.0 1.0 11,797 -1,671 2,728 

4 6.4 143.7 0.0 0.0 13,025 384 3,919 



 

Still considering the inferences for N 

obtained using the empirical Bayes approach, 

those results compare favorably with the 

ones obtained by Raftery and Zeh (1998) 

(6,039 (s.e.=1,915) and 7,734 (s.e.=1,450) 

for 1985 and 1986 respectively), and with the 

1985 and 1986 estimates of 6,649 and 6,820 

(excluding calves) from the Bayesian 

synthesis analysis of Givens (1993) (personal 

communication). The Bayesian bowhead 

whale population size estimates using photo-

id data represent independent estimates from 

those already obtained using ice-based visual 

and acoustic counts of whales (Raftery and 

Zeh (1998)). 

 

Table 3: Inferences for N based on actual 

bowhead whale data - ARS estimates restated 

from da-Silva et al. (2003). Data from photo-

id data in the spring 1985, summer 1985, 

spring 1986, and summer 1986.  

 
 Parameters  

Method a b c d N̂  
Credible 

Intervals (95%) 

0.0 0.0 - - 7,109 (4,746; 11,138) 

0.5 0.5 - - 6,389 (4,466; 9,704) ARS 

1.0 1.0 - - 5,935 (3,978; 8,311) 

0.0 0.0 0.0 0.0 6,690 (4,360;10,200) 

0.5 0.5 0.0 0.0 6,150 (3,970;9,610) 

1.0 1.0 0.0 0.0 5,700 (3,760;8,500) 
Gibbs 

5.9 107.7 0.0 0.0 6,340 (4,544;8,595) 

 

 

8. CONCLUSION 

 

The present paper considers Bayesian 

approaches for estimation of the size N of 

animal populations considering that (1) the 

data are from a photo-id capture-recapture 

experiment; (2) capture probabilities vary 

only due to temporal effects; (3) part of the 

population is uncatchable. da-Silva et al 

(2003) concluded that, for such setting, the 

corresponding Bayesian analysis for N is 

sensitive to the choices of vague beta priors 

for the capture probabilities. In the MCMC 

approach proposed by the last authors they 

used the Adaptive Rejection Sampling (ARS) 

by Gilks and Wild (11) to generate samples 

from a non standard distribution. In order to 

facilitate the whole MCMC process involved 

in the estimation of N, a Gibbs sampling 

approach was suggested in Section 4. 

Performance of the proposed methods was 

evaluated through a simulation study 

involving bowhead whale data generated 

under five different scenarios (the same used 

by da-Silva et al. (2003)). An empirical 

Bayes analysis is proposed as an attempt to 

diminish the biases in the inferences for N 

caused by sensitivity to the prior 

specifications of the capture probabilities.  

 

The conclusions are: (1) the two methods, 

ARS and Gibbs sampling yielded very 

similar inferences for N. Therefore, 

considering the computational difficulties 

involved in the implementation of the 

discussed methods for estimating N, the 

Gibbs sampling is a good alternative since it 

is very easy to implement. (2) The use of the 

empirical Bayes approach proposed in 

Section 5 yields either smaller or comparable 

biases for the estimated values of N 

compared to the biases observed using the 

beta(0.5,0.5) prior. When the population 

includes a very large number of uncatchable 

individuals, inferences for N obtained using 

the empirical Bayes approach are definitely 

superior to those obtained using any of the 

vague beta priors. 
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