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ABSTRACT
The concept of resilience is now widely used toarsthnd the vulnerability of complex systems
to disturbances. It is emerging that more diveys¢esns are more resilient to disturbances. Here
we develop a conceptual understanding of the eesié of behavioral systems and assess how
this measure is related to the diversity of behaisequences modeled using Markov chains.
We show that the resilience of behavior is relatdts unpredictability, a diversity measure,
using simulations and empirical data collected eat study sites over 30 years. The more
predictable behavior is, the less resilient it lmees. Such influences on behavioral resilience
cannot be related to the effect size of disturbameénter-population comparisons. However, we
show that such measures are meaningfully relatedhé¢oinfluence of disturbances when
comparing the same population exposed to diffeesulogical conditions. We show that
behavior predictability can be driven by ecologicahditions. For example, an increase in food
availability can increase the duration of foraghmuts, hence constraining the dynamics of the
population’s behavior. Such constraints increasebieral predictability and in turn weaken its
resilience to disturbance. This empirically-drivteoretical study offers a framework to manage
exposure of animal populations to disturbance.

Keywords. Behaviour (Short-term change, Long-term changgnadgement (Conservation,
Whalewatching)
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INTRODUCTION

There is now a large body of evidence confirmingttbomplex adaptive systems can have
several stable solutions (Levin et al. 1998; Higgat al. 2002; Marcos et al. 2003; Folke et al.
2004; Frank et al. 2005; Kinzig et al. 2006; Daskadt al. 2007; Liu et al. 2007). The likelihood
that such systems shift from one state to anotbpernids on properties of the stable state they
occupy and the forces applied to these systemsigb them away from this initial equilibrium
(Figure 1). Such shifts have particularly been doented in marine ecosystems as a
consequence of anthropogenic impacts (Hare and Uda2000; Scheffer and Carpenter 2003;
Frank et al. 2005; Daskalov et al. 2007; Osterbétral. 2007). In such systems, biodiversity is
linked to system functioning and health (Naeeml.€1294; Tilman and Downing 1994; Tilman
et al. 1996; Tilman 1999; Loreau et al. 2001; Haogteal. 2005; Worm et al. 2006; Ives and
Carpenter 2007). Systems that are more diverse ttelid more stable and more resilient to
perturbations (Hooper et al. 2005; Ives and Carye®07). These concepts of resilience and
stability tend to also be linked to diversity irhet studied systems such as socioeconomic or
technological systems (Levin et al. 1998; Albertabt2000; Albert et al. 2004; Kinzig et al.
2006). Understanding the factors driving the reside of a system provides us with means to
predict the influences of perturbations or distades on those systems and the likelihood that
those will result in state alterations. The termilience defines two concepts that have recently
been shown to be related (van Nes and Scheffer)2B0gtly, “ecological resilience” represents
the maximum perturbation a system can accommoddfeowt shifting into another state
(Holling 1973). It represents the width of the Ipasif attraction surrounding a stable state
(Holling 1973); the greater the basin, the hardlés to “push” the system out of a stable state
and therefore the system is more resilient in state. Secondly, “engineering resilience”
represents the rate at which the system recovems & small perturbation (Pimm 1984), a more
resilient system recovering faster. In a conceptejatesentation of system dynamics (Figure 1),
ecological resilience would correspond to the btteadl the basin of attraction while engineering
resilience would relate to the steepness of thessad the basin. The steeper the sides are, the
faster the system can “roll back” to the stabldest&ngineering resilience can be calculated
empirically and theoretically using a variety oftt@iques (Neubert and Caswell 1997; Ives et al.
2003; Hill et al. 2004; Wootton 2004; van Nes amhefer 2007). While conceptual work is
available on ecological resilience, it has provetrteamely challenging to develop techniques to
guantify it (van Nes and Scheffer 2007). Recentkiay van Nes and Scheffer (2007) show that
both these concepts are linked, offering a waysgess resilience using the time it takes systems
to recover from a small perturbation. In additioacovery rates appear to slow down as the
system approaches conditions leading to a shitable solution (van Nes and Scheffer 2007);
in other words as it approaches the hill betweamltasins (Figure 1). Monitoring recovery rates
from small perturbations across a range of conustican therefore help in understanding how
disturbances affect the resilience of a systemufeid).

Animal behavior can be understood as a complex tadagystem (Granovetter 1978;
Simpson et al. 1999; Nolfi 2004; Sumpter 2006). &ebr is a dynamic phenomena resulting
from the integration of several non-linear intel@cs$ within individuals and between individuals
and their environment (including conspecifics).d.iither complex systems, behavioral systems
can have alternative stable states influenced ltly mirinsic (e.g., homeostasis) and extrinsic
(e.g., changes in ecological conditions) factorev(h et al. 1998; Lusseau 2004; Walker and
Meyers 2004). Animal behavior is increasingly useda tool to understand the influence of
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human disturbance on the lives of animals (Blumsggid Fernandez-Juricic 2004). Having an
understanding of the principles governing the i@sde of behavioral systems would provide
important theoretical ground to conservation betiavsomething that some authors argue this
field is lacking (Caro 2007). Some studies haveaaly shown that human disturbances can shift
the behavioral regime of targeted populations. Bu@ractions affect the behavior of cetaceans
(Baker and Herman 1989; Corkeron 1995; Bejder.et389; Lusseau 2003a; Bejder et al. 2006;
Williams et al. 2006; Stensland and Berggren 20@der twenty years of studies, we now
understand that this disturbance result from avwidatactics that disrupt the behavior of
targeted individuals, animals forgoing their cutraotivities to move away from boats. These
disruptions can lead to reduced fitness and hahiiahdonment, which can impact the viability
of the targeted populations (Lusseau 2004; Lus288ba; Bejder et al. 2006; Lusseau et al.
2006b; Williams et al. 2006; Stensland and Bergg@d7). These energetic alterations can be
driven by shifts in behavioral regimes. For exampiettlenose dolphinsT(rsiops sp.) in
Milford Sound, Fiordland, can respond to boat distimces using short-term evasive tactics, i.e.
moving away from the boat interaction. Howeverthiére is on average less than 70 minutes
between two boat interactions in the fiord, dolghivill shift to long-term avoidance tactics, i.e.
avoiding the fiord altogether during high boat matgion periods (Lusseau 2004; Lusseau 2005a).
The stable states of the behavioral system herenalgdimensional, integrating space use and
activity budget. It is complicated to manage compgstems that have alternative stable states
because they are affected by a wide variety ofnisit and extrinsic factors (Yodzis 2001;
Corkeron 2004; Frank et al. 2005). More importaniiile such system can be pushed into an
alternative state by varying conditions, it mayetakore than reverting to original conditions to
shift the system back into its original state (Sfgreet al. 2001). Therefore, management
practices need to ensure that the ecological eesdi of systems that we use is either maintained
or improved in order to minimize the likelihoodwiwanted state shifts.

A recent review of resilience studies in ecosystshmv the lack of empirical foundations
for the mechanisms underlying the observed relalips between resilience and responses to
perturbations (lves and Carpenter 2007). We askess the mechanism through which
ecological conditions can affect the resiliencebehavioral systems resulting in differences in
the effect disturbances will have on these systdtinstly, we assess whether the resilience of
dolphin behavioral sequences is affected by itserdity, using a measure of engineering
resilience. Analyses of animal behavioral sequercdiected in the field as a Markov process
have proven a useful tool in conservation biologyassess the influence of disturbances on
animal behavior (Lusseau 2003a). We compare thigere of behavior in nine populations of
dolphins at ten different sites and assess whdtbkavioral systems that are more diverse are
also more resilient. The rate of convergence tosthgonary distribution of a Markov process
provides a measure of the time it takes this pmé@secover from a small perturbation (Hill et
al. 2004; Wootton 2004). This rate of convergenae be measured in several ways, one of
which is the damping ratio of the transition probgbmatrix defining the Markov process
which provides a minimum estimate of the convergeamte (Hill et al. 2004). Finally using two
case studies, we determine whether varying ecabganditions can affect the resilience of the
behavioral system studied and in turn influencewhg in which disturbances, in this case boat
interactions, affect dolphin behavior.



SC/60/WW9

Perturbation

C"f?cﬁnbns

Behavioural system state

Figure 1: Diagram showing how extrinsic conditiqesy., food availability) can influence the
resilience of a behavioral system that has sewstahle states (two in this diagram). Stable states
are represented by basins of attractions in whiehsystem (represented by the black ball) rests.
The system shifts its state when it rolls from d&@sin to another. Such movement is going to
impaired/aided by the shape of the basin. Theieesg of the system in a given state is
represented by the width of the basin (ecologieallience, see text) and the steepness of the
basin (engineering resilience, see text). Exteowaditions can change the resilience of the
different states meaning that in some instancesthasresilience becomes small, a small
perturbation can shift the system from one statanother. Figure adapted from the concept
presented in Scheffer and Carpenter (2003).

MATERIALSAND METHODS

Sampling behavioral state

Several studies have now defined the behavioréé sepertoire of dolphins and analyzed the
temporal sequence of those states as a Markov ggdtesseau 2003a; Lusseau 2004; Bejder
2005; Williams et al. 2006; Stockin et al. 2008;irB&t al. submitted; Christiansen et al.
submitted). We collated information about statasition probability at these ten sites spanning
Six species, three continents, and cumulativelyesgnted 31 years of field sampling (Figure 2).
At all sites we used scan sampling of focal schtmldefine the predominant behavioral state of
focal schools of dolphins at a constant samplirigrial (Altmann 1974; Mann 2000; Lusseau
2003a). The sampling interval was 15 minutes atthoastions except for four sites (Figure 2).
We defined behavioral states to be mutually exetisind cumulatively inclusive (as a whole
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they described the entire behavioral budget ofithiphins at that given site). We refer readers to
the articles cited above for further details onheaicthe study site.

Earth (http://visibleearth.nasa.gov/)

We estimated transition probabilities as first-ortlme discrete Markov chains using these
observed samples of state sequences. We constriveteathains for each site. If no boat
interaction occurred between two state samplestaled the transition between these two
samples in a control table. If a boat interacti@euwred between two samples, we tallied the
transition in an impact table. We discarded trams#t between a sample succeeding an
interaction and the following sample. In other wsrd a boat interaction occurred between
sample 1 and 2, we did not consider the transitetween samples 2 and 3. If sample 2 was
affected by boat interaction, then the transiti@iween 2 and 3 could be considered neither
impact nor control. We obtained square matricesizds, wheres was the number of states in
the behavioral budget at a site, transition prdiieds being:

a s
P = s” 'Zpijzl 1)
1
j=1

Wherei was the preceding behavipmvas the succeeding behavioa(d] range from 1 to sk

is the number of transitions observed from behavitarj, andp; is the transition probability
fromi to ] in the Markov chain. All subsequent analyses veareied out on the control chains,
unless stated otherwise. Given the pilot whale $agnscheme transitions were dominated by
control conditions but a small minority of transits may be impact conditions (Auger-Méthé
and Whitehead 2007). We could not distinguish betwtdose in the dataset.

Quantifying resilience and diversity



SC/60/WW9

The engineering resilience of transition probapilimatrices was estimated using the
convergence rate of the Markov chains; that isltigeof its damping ratio (Hill et al. 2004;
Wootton 2004):

/11

e 2
A “
Where 1; is the dominant eigenvalue anid the second eigenvalue. Given this definition,
resilience estimates can vary from zero to infinlteis damping ratio estimates how long it takes
the chain to converge on the behavioral budgetethelibrium, from its initial conditions. We
used the entropy of the matrices to quantify tlidwersity (Hill et al. 2004) for two reasons.
Firstly, this measure is directly related to otlersity measures used in ecosystem stueigs (
Shannon’s diversity index) and therefore can baeitinely linked to the concept of system
diversity. Secondly, it relates to the predictabilof the Markov chain. A matrix with high
entropy will be more unpredictable, that is thdesta which it will be at the next step cannot be
determined easily. The concept of flexibility isthé core of the concept of resilience, the more
flexible a system the less likely it is to be ghiftby a perturbation (Levin et al. 1998). This
translates in behavioral system into the conceppretiictability where a more unpredictable
system is less likely to be shifted by perturbatiomhich is what the entropy measure allows us
to test. The entropy of the transition matrices defined as (Hill et al. 2004):

H(P):—iwjipij Inp, (3)

Inp=In(

WhereP is the transition matrix of sizg w is the dominant eigenvector of the matrix normalize
to sum to 1 (it estimates the proportion of timergpin each state, i.e. the behavioral budget),
and p;j is the transition probability from stateto statej. Since the size of behavioral state
repertoire was not the same in all populationssgheere composed of four or five states in the
nine populations) we normalized the entropies (étilal. 2004):

_HP)
in(t)
s
Hnorm Varies from 0 when the state of the chain at #d time step is always known (transition
is deterministic) to 1 when transition are compietepredictable. We bootstrapped 1000 times

the transition matrices, given the sample sizethechumber of samples for each transition for
each study, to obtain confidence intervals arowsdience and entropy estimates.

H P) 4)

norm (

Theinfluence of sampling

While most sites used a similar 15-min. sampling,réour sites used different rates (common
dolphins Delphinus sp.): 3 minutes, Indian Ocean bottlenose dolphings(ops aduncus) in
Shark Bay: 10 minutes, long-finned pilot whal&dbicephala melas): 10 minutes, Hector’'s
dolphins Cephalorhynchus hectori hectori): 3 minutes, Figure 2). We therefore calculategl th
relationship between resilience and entropy in ways. We first used all the original datasets
and we subsequently used re-sampled, with a 15sampling rate, datasets for those sites that
had different sampling rate. Sample size preventedrom re-sampling the original datasets
directly. We therefore created samples for eadh®tthree sites using the transition matrices to
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inform a hidden Markov model. For each study, weated a sequence of 100,000 states using a
hidden Markov model informed by the transition mblity matrix in Matlab. The first 50,000
states were discarded to escape initial condit{bnsn-in) and the transition probability matrix
was reconstructed using the sequence of the 1a806Gtates. We then constructed two matrices
using this sequence. The first transition matrid tiae same sampling rate as the original one
had and the second one was constructed by re-sagrthpe sequence using a 15-min sampling
interval. We then calculated the resilience andogyt of both matrices to first assess how the
matrix with the original sampling rate differed rfinothe observed matrix and second to infer
what the resilience and entropy values would haenlfor these sites if sampling had occurred
at a 15-min. rate. We repeated this process 1006sti bootstrapping the observed transition
matrix at each iteration to estimate the uncenaintresilience and entropy estimates due to
sample size.

We also assess the robustness of these two valusaniple misclassification; that is the
influence from a sample was wrongly assigned tavangstate. We randomly reassigned
samples (p ranging from 0 to 20%) in the Doubtfou®d Markov chain and assessed the
proportion of departure in resilience and entroplues.

Relationships between resilience and diversity in simulated matrices

We assessed whether the observed relationship @etwatropy and resilience may have
occurred by chance using three sets of simulatibhese simulations aimed at defining which
feature of behavioral Markov chains may influente trelationship between entropy and
resilience. First, we designed random matrices wildments drawn from a uniform random
distribution [0;1]. Second, we designed randomditaon probability matrices, i.e. matrices with
similarly drawn random elements but with the sunih&f rows being one. Lastly, we designed
random transition probability matrices for whichetmaximum value of each row was on the
diagonal. For each of these three cases, at eseltioin we drew ten 5x5 square random matrices
and calculated the Pearson’s r correlation coefficbetween their resilience and their entropy.
We iterated this process 1000 times to obtain thdidence intervals around these correlation
coefficients. We used this matrix size and numlmmfiguration to compare directly results to
our observed dataset, using larger matrices, and ofdhem, yielded similar results.

Elasticity of resilience and entropy measures

Prospective perturbation analyses can help undhglisig the functional relationships between
elements of a transition matrix and a feature efrtiatrix as a whole. For example such analyses
can be used in population ecology to understand haa which, vital rates influence population
growth rate (Caswell 2000). We therefore used peation analyses to determine the
contribution of different behavioral states to liesice and entropy. Hence, we were interested in
the sensitivity of these two measures to smallupkations in transition probabilities. We
calculated the sensitivity of resilience and engregtimates to small changes in the transition
matrices via simulations. We measured proportichahges in resilience and entropy in relation
to proportional changes in transition probabilitiscalculating the elasticity of those measures.
We systematically perturbed each of the transipavbability by 0.1% and then calculate the
proportion by which each of the two measures chargjeer this perturbation (Caswell 2001)
hence inferring the sensitivity of these measumesdch transition probability. From these
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sensitivity matrices, we derived the elasticity msilience and entropy to each state by
calculating the proportional changes attributedaoh state. In the case of entropy:

P oH
Ei = L (5)
Z H op;
oH . . - B OH .
Wherea— is the sensitivity of the entrogy to the transition probability;pand H oo is the
Pj i

elasticity matrix. The same applies to the resileemeasure. From these estimates we can then
define whether the predominance of a state in thmilation’s behavioral budget relates to its
contribution to the resilience and entropy of bebil sequences. That is we can estimate
whether changes to predominant behavioral stagemare likely to perturb the resilience or the
entropy of the behavioral system.

Theinfluence of varying conditions on killer whales
Interactions between boats and dolphins influeheedblphin’s behavioral transition probability
and consequently can influence the behavioral huofghe affected population (Lusseau 2003a;
Lusseau 2004; Williams et al. 2006; Stockin e2808; Bain et al. submitted; Christiansen et al.
submitted). Such consequences can lead to impactkeobiology of the targeted populations
(Lusseau 2005a; Bejder et al. 2006; Lusseau €204l6b). Here we are trying to understand
whether variation in ecological conditions to whithhe population is exposed can affect its
resilience to disturbance, which would mean a chamg the magnitude of the effect of
disturbances on the behavioral budget of the ptipula

Previous work at the Robson Bight-Michael Bigg Bgital Reserve (Figure 2) shows that
the behavior of northern resident killer whal€&rdinus orca) at that site is influenced by
availability of preferred prey, principally the Blcdensity of Chinook salmorOfcorhynchus
tshawytscha) (Ford et al. 1998; Lusseau et al. 2004; Ford Eiid 2006). We also showed that
boat interactions disrupt the behavior of killerals at this location (Williams et al. 2006). We
estimated the resilience and entropy of the belnalvMarkov process for each year from 1995
to 2003 to assess whether varying ecological cmmdif Chinook salmon density in the area
(estimated using catch per unit effort, CPUE), @#d indirectly the magnitude of the impact
caused by boat disturbance. This density measusitdésspecific and does not quantify the
overall salmon abundance over the whole home rahgee population, but it also means that it
represents the food conditions at the location $aanfl usseau et al. 2004). We estimated the
duration of foraging bouts from the transition pabbity matrix (Williams et al. 2006):
t” :i (6)

1-p;
The intensity to boat exposure did not change Bagmtly over the nine years (Williams et al.
2006). We assessed the effect of boat interacigtmrdances on the behavioral budget of killer
whales by comparing the behavioral budget estim&t@ah the control transition matrix and
from the impact transition matrix. The budget watineated by the left eigenvectaw, of the
dominant eigenvalue of the matrices (Caswell 200isseau 2003a). The magnitude of the
impact was defined as the impact budget's mearadegifrom the control budget:
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W, -w 2 _
di - ( impact; comroli) andd :di (7)
(Wimpact W control )
( impact; control; )

2
Where dis the deviance for stateandw; is the element olv for statei. We tried a variety of
ways to calculate the difference between the twagbts, which all lead to similar conclusions.

Behavioral regime shift in bottlenose dolphins

Recently the population of bottlenose dolphinsnivin Doubtful Sound, New Zealand has gone
through a rapid shift in population biology paraemst (Currey et al. 2008; Currey et al.
submitted). While the adult survival rate remaimedstant from 1990 to 2009 4uit(1990-20077
0.9368; 95% CI: 0.9163 — 0.9526), the calf surviedd decreased sharply and suddenly between
2001 and 2002%3”(1994_2001): 0.8621; 95% CI: 0.6851 — 0.947@5,3”(2002_2007): 0.3913; 95%
Cl: 0.2177 —-0.5976) (Currey et al. submitted). @gpothesis for this decline is that the added
energetic constraints of boat interactions on fes& leading to reduced reproductive success
as observed through a decrease in calf survivadqéau 2003b; Bejder 2005; Lusseau et al.
2006a; Lusseau et al. 2006b). Boat interactiond s&hools of dolphins to spend significantly
more time traveling and less time resting (Luss2803a). More importantly they lead to
increased traveling bout duration which is eneogdlyy costly for individuals that already have
other energetic constraints such as pregnancyctation (Conradt and Roper 2000; Lusseau
2003a; Lusseau 2004). The 2001/2002 threshold sporels to an increase in boating activities
around the dolphins that may have pushed the populea a new, energetically more expensive,
behavioral regime (Lusseau et al. 2006b). In sum2@&1 boating activities lead dolphins to
have on average 110min. between two boat interetichile this measure decreased to 70min.
in summer 2002 (Lusseau 2005b; Lusseau et al. 2006k latter inter-interaction time lapse is
similar to the ones observed triggering a shifb@mnavior in Milford Sound as discussed in the
introduction (Lusseau 2004). We assessed whethar aushift occurred by comparing the
control Markov chains for 2001 and 2002 and theaatoat interactions had on the behavioral
budget of these dolphins in both years (using Eg. 7

RESULTS

The resilience of the behavioral systems studied significantly correlated to their diversity,
the more unpredictable a system was (the highenit®py) the more resilient it was (Figure 3).
This relationship did not occur by chance. Theliesie and entropy of random matrices were
not correlated (Pearson’s r = 0.09, 95% bootstramoafidence interval over 1000 iterations: -
0.612 — 0.660). These measures were also notadiateandom Markov chains (r = 0.53, 95%
Cl: -0.100 — 0.880). However, they were in the sasbere the random Markov chains had a
dominant diagonal (r = 0.65, 95% CI: 0.138 — 0.923nce behavioral sequences, in which
behavioral states are performed in bouts, are amttlgrlikely to have their resilience related to
their predictability. We found that varying the esinf the matrices or the number of matrices
used to assess the relationships between resili@ndeentropy did not change these overall
results. Therefore, the diagonal of matrices, wihiichates the length of behavioral bout duration,
plays a role in defining the relationship betweatr@y and resilience. Re-sampling chains with
varying sampling intervals affected the estimatésresilience and entropy we obtained.



SC/60/WW9

However, the relative relationship between these tveasures was not affected by re-sampling
(Figure 3a,b). Sample misclassification did noténan important influence on resilience and
entropy (Figure 4).

00| r=0.78 (0.43-0.90) °o| r=0.60(0.45-0.71)

Resilience
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Figure 3: The relationship between resilience artbpy for (a) the original Markov chains and
(b) the re-sampled Markov chains so that all chhasthe same sampling interval (15 minutes).
Re-sampled chains are marked with open symboler Bars are bootstrapped 95% confidence
intervals. Pearson’s r, with 95% bootstrapped dmrice intervals, is presented for each panel
for relationship between resilience and entropy.

The behavioral resilience was not related to theepled impacts on behavioral budget
(Pearson’s r = -0.28, 95% bootstrapped confidentsval: -0.55 — 0.27). That is, more resilient
systems, as defined using the damping ratio oMaekov process characterizing them, were not
in fact more resilient to disturbances.

0.05

—Resilience
.......... Entropy
0.041 |

0.031 b

0.02r b

Proportional change in value

0.01-

’ | | | | |
0 0.02 004 006 008 01 012 014 016 018 0.2
Proportion of misclassified samples

10



SC/60/WW9

Figure 4. The robustness of resilience and entrimpgample misclassification measured by
proportional changes in each of these values f@rgproportions of samples misclassified.

Elasticity of resilience and entropy measures

The elasticity of entropy seems to be consisterasttypss studies, related to state rank, with
predominant states having more influence on entrdmn rarer ones (Figure 5a). The
contribution to the elasticity of entropy of eadhte was significantly related to state rank in
seven out of the ten studies (Spearman’s rank latioe < -0.8, p-values <0.05 estimated using
1000 permutations in each instance). The predorhstate had in all studies the most influence
on entropy; given repertoire size such result céialde occurred by chance with a probability of
4.10°. This trend was not apparent for the elasticityredilience (Figure 5b). However,
resilience and entropy were more influenced bydiagonal of the transition probability matrix,
with maximum values of the elasticity matrices lgemeferably on the diagonal of the elasticity
matrix (Figure 6a,b). Therefore, bout duration moBuenced resilience and entropy estimates.

11
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Figure 5: The elasticity of (a) entropy (H) and (e3ilience to the transition probability matrices,
note the different scales on the axes. The praputielasticity is presented for each state ranked
from the predominant state (rank 1) in the behabibudget (greatest elementvwgfto the rarer
state (rank 4 or 5 depending on the state repersie).
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Figure 6. The elasticity of (a) entropy and (b)lresce to proportional changes in transition
probabilities. The figure represents the averagelakbe elasticity for each transition (5 states)
across the ten studies. Note the peak along thtedi;gonal of the matrix, showing that bout
duration disproportionately influences resilienoe antropy.
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Theinfluence of varying conditions on killer whales

As predicted from foraging theory (Mangel and Cla%86), the duration of foraging bouts
observed off Robson Bight increased with local saindensity (Figure 7a). While untested,
given the small number of years studied, theremesindication that this relationship may be
non-linear. The increase in foraging bout durati@s related to a decrease in the entropy of the
Markov chain as expected from the simulation wodsatibed above (Figure 7b). As bout
duration increased, the chain became more pretictals expected the relationship between
these two variables, while robust, may be more dexngs there appears to be outliers. This is
expected given that foraging is only one of theéestanfluencing the entropy measures and non-
linear interactions could emerge from conditiorffuencing different states in different manners.
The resilience of the chain was related to itsagayy and therefore an increase in predictability
lead to a decrease in resilience (Figure 7c). Resi appear to be linked to the impact of boat
interactions on the behavioral budget of the pdmra(Figure 7d), hence a decrease in
resilience would lead to an increase in the mageitof the impact of boat disturbance (leading
to a mechanism similar to the one described inréigy.

Figure 7 (overleaf): The relationship between egilal constraints on the behavioral system
and the effect of disturbance on that system ircése of northern resident killer whales. Prey
density is related to foraging bout duration (&)tf@ose bouts lengthen, the entropy of the
behavioral system decreases (b), leading to a @eera resilience (c), and a decrease in
resilience is related to an increase in disturbafieet size on the behavioral budget (d). Error
bars are 95% bootstrapped confidence intervals 9bB& bootstrapped confidence intervals of
Pearson’s r correlation coefficient is also prodiddong with the likelihood that the relationship
is not different from zero (significance at p=0.0Bhotos are courtesy of Ken C. Balcomb and
Rob Williams.
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Behavioral regime shift in bottlenose dolphins

The behavioral budget observed during control dah varied from 2001 to 2002 (Figure 8a).
Dolphins spent significantly more time travelingddass time resting and socializing. The nature
of these variations is similar to the observed iobjgd boat interactions (Lusseau 2003a; Lusseau
2004) on the behavioral budget of these dolphimsnf@aring control and impact conditions).
This energetically more constraining budget wasmatched by an apparent increase in energy
intake as there was no changes in the amount efgpent diving (foraging most likely to occur
during the diving state, Figure 8a, Lusseau 200Bag. duration of traveling bouts significantly
increased (by 37%) but the duration of resting balid not (Figure 8b). We can conclude from
the budget and bout duration results that dolpleimgaged less often in resting bouts during
control conditions in 2002. The impact of boat ulibince on the dolphin budget did not change
significantly from 2001 (gho; = 0.056, 95% bootstrapped confidence intervali®0- 0.0991)

to 2002 (doo2= 0.044, 95% CI: 0.007 — 0.114).

As expected (Figure 5) this increase in bout danatif the predominant behavior (traveling)
lead to a significant increase in the predictapif the Markov chain (kb1 = 0.78, 95%
bootstrapped CI: 0.748-0.8133d¢a,= 0.70, 95% bootstrapped CI: 0.654-0.741). Thigese in
entropy was however not matched with a decreasesitience (Roo1= 0.57, 95% bootstrapped
Cl: 0.464-0.687; Ryo.= 0.62, 95% bootstrapped Cl: 0.511-0.747).
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Figure 8: Variation in the Doubtful Sound behaviagstem from 2001 to 2002 assessed from
the differences in behavioral transitions duringntool conditions: (a) variation in behavioral
budget (proportion of time spent in a given stae) (b) variation in bout duration. Error bars
are 95% bootstrapped confidence intervals.

We would have expected to see a slowing down ofrélcevery rate of the Markov process

(resilience) with the increase in boating actiithanging conditions) that occurred from 2001
to 2002 (van Nes and Scheffer 2007). Given thatsawg both no change in this measure and
significant changes in the behavioral budget legdowards a more predictable regime, we
hypothesise that this represents a shift in theletstate of the behavioral system in Doubtful
Sound (Figure 1). The 2002 behavioral regime wasgatically more expensive which could

explain the observed population-level changes.
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DISCUSSION

Changes in transition probabilities do not affée tesilience of the behavioral system directly.
However, these changes can affect the resilierdieettly by affecting the predictability of the
system. As the system becomes more predictabkn btcause of added constraints in the form
of increased bout duration, it becomes less rasilitndeed, our prospective perturbation
analyses confirmed that bout duration is an impardaiver of behavioral resilience and entropy.
This decrease in resilience does affect the imgastiirbances will have on the system, showing
that this resilience measure is a biologicallyvalg mean to assess the relative consequences of
disturbances on behavioral systems. However, tbissore is not absolute and cannot be used to
compare directly the resilience of different systermhis could be for two reasons. First, while
the stimulus was the same in all studies (boatant®ns), the disturbance this stimulus would
have created was different for each system. Baardotions can disrupt the acoustic cues
dolphins use for foraging and staying in contacb@2002). The behavior of boats during the
interactions can also physically constrain the momet of these animals (Lusseau 2003b).
Therefore, the disruptions incurred on the behaVlibudget of the studied populations may be
emerging from either disturbance mechanism or a baoation of both depending on
characteristics of the population ecology. Seceagh system is indirectly influenced by a wide
variety of extrinsic conditions. The magnitude loé Eeffects of these conditions on the resilience
of the system will vary between sites, as we shath the killer whale case study, and hence
influence inter-site comparisons of resilience.

When compared within a site, resilience and entrapy useful measures to infer the
conditions of a system. They can be used to dranergé principles on the way to both maximize
the resilience of behavioral systems and minimlze impact of disturbances. The northern
resident killer whale example shows that at thet gie effects of disturbance and the whale’s
prey local density are indirectly related. Suchatiehship should be further investigated to
inform the management of human disturbances. Madkie understanding we gained in this
study on the link between entropy and resilien@¥ides useful guidelines for the application of
the precautionary principle in disturbance managentystems that have behavioral constraints
are likely to be more impacted by disturbances bgedhey are less plastic. Examples of such
constraints may be spatial and/or temporal heterge in prey availability or in access to
conspecifics. The entropy measure is particuladgsgive to influences on the predominant
behavioral state in the behavioral repertoire aadck disturbances to those states will have
greater impacts on the behavioral budget overall. Rbbson Bight, an increase in prey
availability increases foraging bout duration caaisits on the killer whale population. This may
be because the schooling behavior of salmon chaaga$eir abundance increases; salmon
moving in fewer, larger schools. These behaviooaistraints in turn influence the effect size of
disturbance on the whale’s behavior. There are somdeations that large-scale climatic
variations in the Pacific Ocean are a good predigt@almon abundance for this location with a
two-year lag (Mantua et al. 1997; Mote et al. 2008seau et al. 2004). Hence, it may be useful
to make use of this relationship to predict thergering which the killer whale population will
be less resilient to disturbance.

In Doubtful Sound, an increase in bout durationlead to a decrease in the plasticity of the
dolphin behavior. The increase in time spent tiageiay be the result of a decrease in prey
density at foraging patches (Lusseau and Wing 2a86yvever, the lack of variation in diving
behavior does not support an influence of food lakdity. In contrast, such increase can be
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likened to the shift in avoidance tactics observeiilford Sound at the same inter-interaction
interval threshold (~70min., Lusseau 2004). Boaeractions only occur in 17 of the
population home range for the bottlenose dolphioutetion visiting Milford Sound. In contrast,
boat interactions are pervasive in Doubtful Sounduaing throughout the population’s home
range. An increase in time spent traveling may &egived as a shift in avoidance tactics to
maintain control on the impact of interaction dibances by increasing spatial avoidance when
the intensity of boat interactions increased.

Given the resilience estimate in Doubtful Soundicllis a measure of the system'’s recovery
rate, the behavior of a dolphin school is 98% reced after 110min and 93% recovered after
70min since the chain converges at least as fasixp&tlrp) (Hill et al. 2004). If the inter-
interaction interval is 70min. a school of dolphimd#l have on average six interactions per day,
while if it is 110min they will have four interaotis per day. This means that at the end of the
day in the 110min scenario the school will be 92%owered (0.99 and in the 70min scenario
they will be 65% recovered (0.93 Therefore, disturbances can have a cumulatifectedn
these systems in instances where the systems aggvea sufficient time to recover after each
disturbance. Extrinsic conditions and lack of suéfint recovery can therefore interact to result in
shifts in stable state even when the resiliendb®ttate would have been preventing such a shift.
This could explain dolphins using larger-scale daace tactics to manage the cumulative
effects of disturbance as we observed in Milfordr@b(Lusseau 2004).

These effects are particularly compounded in groapg species that are not assorted by
body size/metabolic regimes (Conradt and Roper RA00these instances, conflicts between
survival and reproduction can lead to sub-optinmmediate behavioral solutions for some
members of the groups (Heithaus and Dill 2002; easset al. 2003; Bejder 2005). These
discrepancies can be exacerbated by disturbancagmaent tactics, leading to behavioral
regime shift that brings the population into a sybinal biological basin of attraction (such as
observed in Doubtful Sound). This study providetheoretical framework to investigate how
such biological shifts can evolve from the way aasnbehaviorally manage disturbances to
which they are exposed.
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