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Abstract

In the hazard probability model for line transect surveys the cues of an individual
occur according a stochastic point processes in time. The cue rate or cue strength
might vary between individuals, and cues might vary in strength within individu-
als. Neglecting these sources of heterogeneity is found to typically inflict a positive
bias in effective strip half-width and thus a negative bias in abundance estimates.
In a survey of northeastern Atlantic minke whales the dominating source of extra
variability is found to be variation in cue strength within individuals which induce
a positive bias of some 20% in abundance estimates when neglected.

1 Introduction
Minke whales in the northeastern Atlantic, and other populations of whales, are censused
by line transect surveys aimed at detecting discrete cues, i.e. brief moments of surfacing
for breathing of about 2 seconds, interrupting dives with an average length of 78 seconds
[Skaug et al., 2004, Schweder and Øien, 2007], and they move at a speed that is swamped
by the speed of the observers. Double-observer designs are used in such surveys to es-
timate the detection probability on the transect line. Typically [Schweder et al., 1999,
Skaug et al., 2004, Okamura et al., 2003, 2006] the individuals are assumed immobile and
distributed with constant two-dimensional spatial density; they surface independently of
each other; and at discrete time points following a Poisson processes with a common rate.

Will abundance estimates from line transect surveys be biased due to unmodelled
heterogeneity, and in case will the bias be positive or negative, and will it be of substan-
tive size? We consider the case of double platform line transect surveys with discretely
available cues. Birds detected from occasional vocalization, and whales detected when
they surface for breathing have discrete cues.

Borchers et al. [2006]studied the effect of unobserved heterogeneity in double platform
line transect surveys with cues continuously available, and found the effect to be a negative
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bias in abundance estimates. We borrow some of their modelling techniques, and we also
use convexity arguments. From theoretical arguments and from fitting random effects
models to survey data for minke whales in the northeastern Atlantic, we do also find the
bias mostly to be negative.

These findings are in line with what is known for capture-recapture experiments
[Pledger et al., 2003], and is partly due to double platform line transecting with dis-
crete cues having an element of capture-recapture structure since an individual detected
by one platform is regarded as a captures and subsequent cues as occasions for possible
recapture for the other platform.

In our case with discrete availability, there is information about which observer made
the initial observation, and whether the other observer misses subsequent ques. We follow
Skaug et al. [2004], and consider data consisting of the following records for each sighted
animal: the planar position (relative to the observer) of initial sighting (the position
data); whether only observer A, only observer B, or both A and B made the initial
observation (trinomial trial); and if only A, say, made the initial observation he tracks the
individual and records subsequent cues which are regarded as exposures for observer B
(Bernoulli trial). Table 1 shows an example track. There will also be covariate information
(weather conditions, team characteristics, etc.). This information set allows the effect of
heterogeneity to be studied at a more detailed level than what was done in Borchers et al.
[2006].

In double platform surveys with discrete availability, sources of unobserved hetero-
geneity include between-individual variation in cue rate and cue strength. Individuals
may also vary their cue rate and their cue strength over time. These sources of variation
in excess of pure randomness in the sighting, and variation in covariates, are identified in
more detail below. A modelling framework is developed, and we show that unmodelled
heterogeneity mainly leads to bias in abundance estimates, when neglected. In our appli-
cation to minke whales in the North Atlantic, we find a substantial negative biases, and
we quantify the relative importance of the different sources heterogeneity.

2 The basic hazard probability model
We start by reviewing the hazard probability without any source of heterogeneity beyond
that resulting from the stochasticity in cue times. Consider animals scattered over the
plane according to a stochastic point process with constant spatial density D. The survey
is assumed to go along a straight line, say the whole y-axis of the plane, with the observer
moving at a constant speed v.

In the hazard probability model for line transect sampling with one platform and
discrete cues, but without unmodelled heterogeneity [Schweder, 1974]. The units are
here assumed immobile and distributed over a two-dimensional surface according to a
homogeneous stochastic point process, and the cues of different units are assumed to follow
independent stochastic point processes in time. We assume the cues of an individual to
follow a Poisson process. The observational platform is assumed to move at constant
speed v along a straight line, say the y-axis, and individuals are detected according to
independent series of Bernoulli trials governed by a hazard probability function of the
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position of the animal relative to the observer. The hazard probability is the conditional
probability of detecting a cue of an individual (success in the Bernoulli trial) given that
non of its previous cues were detected. An animal located at (x, y) will then have a
probability g(x) of being observed, and observations are independent from individual
to individual. The detection function g is assumed symmetric about the origin, and is
typically non-increasing as the perpendicular distance x increases to either side of the
trackline. In this setting the individuals observed in the survey have spatial locations
that are a thinned and possibly transformed version of the spatial population process
[Schweder, 1974].

Shifting to relative coordinates, the cues produced by an individual are at forward
distance yj from the observer, and at perpendicular distance x. The forward distances
form a Poisson process with intensity α/v where α is the cue intensity. Let Q be the spatial
hazard probability function of initial observation. That is, given that the individual makes
a cue at relative position (x, y), and given that it was not observed at greater forward
distance, Q (x, y) is the probability of observing that particular cue. For a forward looking
observer Q(x, y) = 0 when y < 0, and typically Q(x, y) is a decreasing function of x and
y. The probability of this cue not having been observed earlier is

p(x, y) = E

 ∏
yj>y

(1−Q (x, yj))

 = exp
(
−α

v

∫ ∞

y
Q (x, u) du

)
.

The outcome of the line transect survey might be regarded as a stochastic point process
{(li, xi, yi)} in the three dimensions for observation i: location li on the transect line
(absolute coordinates) when the individual was first observed, perpendicular- and forward
relative distance to the cue. The intensity µ(l, x, y) of this point process is obtained as
the product of the intensity Dα/v at l of encountering a cue at relative position (x, y)
and the probability p(x, y)Q(x, y) of this individual not having been observed earlier, and
the cue being picked up. By defining

g(x, y) =
α

v
Q(x, y) exp

(
−α

v

∫ ∞

y
Q (x, u) du

)
(1)

we have µ(l, x, y) = g(x, y)D. Hence, g(x, y) is interpreted as a two-dimensional detection
function, and

g(x) =
∫ ∞

0
g(x, y)dy = 1− exp

(
−α

v

∫ ∞

0
Q (x, y) dy

)
, (2)

is the probability of an individual at distance x being detected, i.e. g(x) is the classical
detection function [Buckland et al., 2001]. Further,

f(x, y) =
g(x, y)

w
, x, y > 0, (3)

is the spatial probability density of initial sighting, were

w =
∫ ∞

0
g(x)dx =

∫ ∞

0

[
1− exp

{
−α

v

∫ ∞

0
Q (x, y) dy

}]
dx (4)
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is a normalizing constant, referred to as the effective strip half-with. Note that the con-
ditional density of y for an initial observations, given x, is given as f(y|x) = g(x, y)/g(x).

Two independent observers A and B with separate hazard probability functions make
up a combined observer A ∪B with hazard probability function

QA∪B = QA + QB −QAB, (5)

in obvious notation. With no heterogeneity in cue strength, QAB = QAQB. The one and
two dimensional detection functions are obtained by substituting QA∪B for Q in the above
expressions. The probability that both A and B detect an individual at distance x is

gAB(x) = gA(x) + gB(x)− gA∪B(x),

and the conditional detection function (probability of detection by A, given detection by
B) is

gA|B(x) =
gAB(x)

gB(x)
= 1 +

gA(x)− gA∪B(x)

gB(x)
.

Figure 1 shows the various fitted detection functions for the data presented in Skaug
et al. [2004]. The pure Poisson randomness makes gA|B(x) > gA(x). This is so since
an individual that happens to make many cues in the visual range will have a relative
high probability of being detected by both observers.This is in contrast to the situation
considered by Borchers et al. [2006] with individuals being continuously available for
observation, in which case gA|B(x) = gA(x) if there is no further heterogeneity.

Each animal detected by the combined platform A ∪ B sets up an experiment with
trinomial outcome u ∈ {A, B, AB} (see Table 1 for an example). Conditionally on the
position (x, y) the probability distribution of u is

q(u|x, y) = {QA∪B(x, y)}−1


QA(x, y){1−QB(x, y), u = A;
QB(x, y){1−QA(x, y)}, u = B;
QA(x, y)QB(x, y), u = AB.

, (6)

where QA∪B is given by (5). In the protocol for the North Atlantic minke whale surveys
[Skaug et al., 2004] observers are instructed to record information about all subsequent
cues the animal makes until it is passed abeam. When one observer, say A, detects
the animal before the other, the subsequent cues detected by A constitute a sequence of
Bernoulli trials for observer B (Table 1). The success probability in trial i is QB(xi, yi),
where (xi, yi) is the relative position of the ith cue. The sequence of Bernoulli trials is
ended when B detects the animal, because it is assumed that B then subsequently detects
all cues, or when the animal is passed abeam. The joint probability distribution of initial
position, outcome of trinomial trial and M Bernoulli trials (for B ending with a success)
is

fA∪B(x, y)q(u|x, y)QB(xM , yM)
M−1∏
i=1

(1−QB(xi, yi)) , (7)

where fA∪B is given by (3) with Q replaced by QA∪B.
The likelelihood (7) will be used to estimate parameters in QA and QB. Okamura

et al. [2003] gives the likelihood for a situation where the outcome (and position) of
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individual Bernoulli trials is not recorded. The information contained in the Bernoulli
trials is condenced into a statement about whether an animal initially detected by one
observer only eventually is detected also by the other observer.

From the information contained in Bernoulli and trinomial trials one can construct an
empirical conditional detection function. If we take all individuals detected by observer
B at distance x (or in inclose vicinity), then the proportion also detected by A consitutes
a nonparametric estimate of gA|B(x). Figure 1 shows that the nonparametric estimate of
gA|B(x) exceeds that based on the hazard probability model for large values of x. Our
hypothesis is that this is caused by heterogeneity at an individual (or cue) level. The fact
that covariates are not included in the model underlying Figure 1 does only to a little
extent explain the discrepancy between the model based and nonparametric estimates of
gA|B(x). The function GA|B(x), which is an weighted average of gA|B over the different
covariate strata of Skaug et al. [2004], is almost identical to gA|B obtained from a pooled
dataset.

3 The effect of unobserved heterogeneity
We distinguish between cue and individual heterogeneity. The latter covers between-
individual variation in cue rate, special characteristics of the animal, random movement
of the animals, temporal variation in cue rate and also variation in observer efficiency
that extends over the time period in which the animal is within detectable distance. The
cue heterogeneity pertains to variability in cue strength between surfacings made by the
same individual.

3.1 Cue heterogeneity

Since an increased detectability of a cue affects both observers, detection is no longer
independent, even though the observers do not exchange information. With c∗ represent-
ing the random cue strength, QA(x, y; c∗) and QB(x, y; c∗) becomes correlated random
variables. The hazard probability QA(x, y) = E [QA(x, y; c∗)] is then really the mean haz-
ard probability for A, and similarly for B, and AB, and the non-zero correlation makes
QAB(x, y) 6= QA(x, y)QB(x, y).

Let QA|B(x, y) and QB|A(x, y) be the conditional hazard probability functions, i.e. QA|B(x, y)
is the probability that observer A detects a cue that occurs at (x, y), conditionally on B
detecting it. The relationship between conditional and unconditional hazard probabilities
is assumed to be

QA(x, y) = c(x, y)QA|B(x, y), (8)
QB(x, y) = c(x, y)QB|A(x, y), (9)

where 0 < c(x, y) ≤ 1 is a function determining the amount of heterogeneity at relative
position (x, y). In the following we fix (x, y), and hence suppress it from our notation.

5



The joint distribution induced by (8) and (9) is

QAB = cQA|BQB|A,
QAB = cQB|A(1−QA|B),
QAB = cQA|B(1−QB|A),

(10)

together with

QAB = 1− (QAB + QAB + QAB) = 1− c
(
QA|B + QB|A −QA|BQB|A

)
,

where A and B means “not detected” by A and B, respectively. The hazard probability
of the combined platform A ∪B becomes

QA∪B = QA + QB −QAB = c
[
QA|B + QB|A −QA|BQB|A

]
.

When 0 ≤ c, QA|B, QB|A ≤ 1 it is clear that (10) is a proper probability distribution.
Specification via QA and QB is also possible, but this would lead to more complicated
constraints on c. When flexible parametric forms are chosen for the involved functions
it should not matter whether one takes the conditional or the unconditional Q’s as the
starting point.

The two dimensional detection function (1) becomes

gA∪B(x, y) =
αc(x, y)

v
Q̃A∪B (x, y) exp

(
−α

v

∫ ∞

y
c(x, u)Q̃A∪B (x, u) du

)
, (11)

where Q̃A∪B = QA|B + QB|A − QA|BQB|A. It is clear that c and the surfacing rate α
cannot be separately identified from initial positions alone, even for constant c. Further,
it follows from (16) and (10) that the conditional distribution of the trinomial outcome u
is

q(u|x, y) =
{
Q̃A∪B (x, y)

}−1


QA|B(x, y){1−QB|A(x, y), u = A;
QB|A(x, y){1−QA|B(x, y)}, u = B;
QA|B(x, y)QB|A(x, y), u = AB,

which is seen not to depend on neither c(x, y) or α.
The Bernoulli trials associated with subsequent cues are not affected by the type of

heterogeneity considered in this section. Consider the case where observer A detects the
animal first. It is assumed that A sees all subsequent cues because he focus all of his
search effort in the region where the first cue was detected. Since we are conditioning
on a certain event we must have QB|A = QB. This argument implies that the success
probability in each Bernoulli trial should be the unconditional hazard probability QB.
A second way of viewing this fact is that cue strength is assumed independent across
cues. That the first observed cue was picked up by A only, does therefor not affect the
detectability for B of subsequent cues.

3.2 Individual heterogeneity

We denote by α∗ the random cue rate (specific to the individual, or the individual’s
observation period), such that E (α∗) = α is the population cue rate. Similarly, Q∗(x, y)
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is regarded a as random quantity varying over individuals. Let furthermore s∗ be the
random speed in linear motion in the direction of the transect (|s∗| < v), to be discussed
below.

The average effective strip half-width is now given by

w = E(w∗) =
∫ ∞

0

(
1− E

[
exp

(
−
∫ ∞

0

α∗

v − s∗
Q∗ (x, y) dy

)])
dx, (12)

with expectation taken over α∗, s∗ and Q∗. The corresponding expression for the positional
density, generalizing (3), is given by the following lemma.

Lemma 1 Under individual heterogeneity the density of relative positions of initial sight-
ings is given by

f(x, y) =
E [g∗(x, y)]

E (w∗)
. (13)

Proof.
Strictly speaking, this result follows from the theory in Section 2. We nevertheless

give a more direct proof, as the proof provide some intuition. Also, the material in the
proof is useful when combining different likelihood contributions below.

Denote by γ∗ the vector of random parameters (α∗, s∗ and parameters in Q∗) through
which heterogeneity acts. The remaining parameters of the model, together with unknown
parameters in the distribution of γ∗, are stacked into a second vector θ. Denote by f(γ)
the density of γ in the entire population of individuals. For a detected individual, the
density of γ∗ is updated via Bayes formula:

f(γ|detected) =
w(γ)f(γ)∫
w(γ)f(γ)dγ

. (14)

A formal argument for this can be obtained by confining consideration to observations
made inside the strip [−L, L]. The detection probability, given that an individual is present
in the strip, is L−1wA∪B, and (14) follows from Bayes rule and by letting L →∞. Using (3)
and (14) we can complete the proof of the lemma:

f(x, y) =
∫

f(x, y|γ)f(γ|detected) dγ =

∫
g(x, y; γ)f(γ)dγ∫

w(γ)f(γ)dγ
=

E [g∗(x, y)]

E (w∗)
. (15)

3.2.1 The likelihood function

When there are two independent observers A and B, each animal detected by the combined
platform A∪B sets up an experiment with trinomial outcome u ∈ {A, B, AB} (see Table 1
for an example). Conditionally on the position (x, y) the probability distribution of u is

q(u|x, y) = {QA∪B(x, y)}−1


QA(x, y){1−QB(x, y), u = A;
QB(x, y){1−QA(x, y)}, u = B;
QA(x, y)QB(x, y), u = AB.

, (16)
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where QA∪B is given by (5). The joint probability distribution of (x, y, u), on which
the likelihood will be based, is fA∪B(x, y)q(u|x, y), where fA∪B is given by (3) with Q
replaced by QA∪B. In presence of individual heterogeneity the likelihood contribution
from the datum (x, y, u) is

L(θ) =
∫

fA∪B(x, y|γ; θ)q(u|x, y, γ; θ)f(γ|detected; θ) dγ, (17)

where θ and γ play the same role as in the proof of Lemma 1.
In the survey protocol for the North Atlantic minke whale surveys [Skaug et al.,

2004] observers are instructed to record information about all subsequent cues the animal
makes until it is passed abeam. When one observer, say A, detects the animal before
the other, the subsequent cues detected by A constitute a sequence of Bernoulli trials
for observer B (Table 1). The success probability in trial i is QB(xi, yi), where (xi, yi) is
the relative position of the ith cue. Conditionally on γ, the likelihood contribution from
the Bernoulli trials is multiplied with the likelihood contribution from (x, y, u), and this
yields an extension of (17).

3.3 Heterogeneity in dive pattern

As an example of the theory we consider the situation with immobile individuals, i.e. s∗ =
0, and constant cue strength across, i.e. Q∗ = Q is non-random. Before presenting some
general results we look at a special case where explicit results can be obtained.

3.3.1 Gamma distribution

Assume that α∗ is gamma distributed with density given by

f (α) =
λa

Γ (a)
αa−1e−λα. (18)

The two-dimensional detection function becomes

g(x, y) =
∫ ∞

0

α

v
Q(x, y) exp

{
−α

v
R(x, y)

}
f (α) dα

= Q(x, y)
a

vλ + R(x, y)

(
vλ

vλ + R(x, y)

)a

,

where R(x, y) =
∫∞
y Q(x, u)du, and thus the effective strip half-width is

w =
∫ ∞

0

(
1−

(
vλ

vλ + R(x, 0)

)a)
dx. (19)

The perpendicular distance detection function is

g(x) = 1−
(

vλ

vλ + R (x, 0)

)a

. (20)

We next investigate how the above quantities changes with the level of heterogeneity
(mixing). It is convenient to keep E (α∗) fixed, say at α, i.e. λ = a/α. Since V ar (α∗) =
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α2/a, the larger a the less mixing around α. By substituting λ = a/α into (20) we see that
g(x) is increasing in a for each x (and decreasing in x for each a), and consequently that w
is increasing in a. However, it is not obvious what happens to the density f(x) = g(x)/w.
The following lemma gives the answer.

Lemma 2 Assume R (x, 0) to be decreasing in x. When the cue rate is gamma distributed
across individuals the effective strip half-width is decreasing, and the perpendicular dis-
tance to detected individuals is stochastically increasing in the dispersion of the mixing
distribution, provided R(0, 0)/v < 1.64.

Proof. In the above parametrization there is more dispersion in the mixing distribution
the smaller the parameter a is. The detection function

ga(x) = 1−
(

va

va + αR (x, 0)

)a

is increasing in a for each x and decreasing in x for each a. The effective strip half-width is
consequently increasing in a. The ratio ga(x)/ga(0) = fa(x)/fa(0) is decreasing in a for all
x > 0 [numerically seen].Let 0 < a < b. The inequality fa(x)/fa(0) > fb(x)/fb(0) imply
fb(0) > fa(0) since the numerators integrate to 1. The perpendicular distance density fb

crosses fa from above at x̃. If fb(x) ≤ fa(x) for x > x̃ then the perpendicular distance
is stochastically larger the more dispersion there is in the mixing gamma distribution,
Xb < Xa. To investigate this consider

h(t) = log
(
(1−

(
1 + t/a)−a

)
/(1−

(
1 + t/b)−b

))
= log (fa(x)/fb(x))

for t = R(x, 0)/v for x > x̃ . The derivative is

h′(t) =
[
(1 + t/a)a+1 − (1 + t/a)

]−1
−
[
(1 + t/b)b+1 − (1 + t/b)

]−1

which is non-positive for t < 1.64 [seen numerically]. Consequently, when R(x̃, 0)/v ≤
R(0, 0)/v < 1.64 this value x̃ is the only perpendicular distance where the two densities
cross, and we have the desired stochastic ordering of larger perpendicular distances for
higher dispersion in the gamma mixing distribution of the Poisson surfacing rate.

3.3.2 General case

The effect of dive pattern heterogeneity on the effective strip half-width might be studied
in more generality. Consider the space of mean-preserving mixing distributions for the
surfacing (cue) intensity. On the multiplicative scale a mixing distribution m∗ is mean-
preserving when Em∗ = 1 such that α∗ = αm∗ has mean α. This space of mixing
distributions is partially ordered by amount of dispersion. The distribution m∗∗ is more
dispersed than m∗ when there is a third mixing distributions m such that m∗∗ has the
same distribution as m∗m.

Let
w∗ =

∫ ∞

0
1− exp

(
−αm∗

v

∫ ∞

0
Q(x, y)dy

)
dx

By the concavity of the function h(z) = 1−exp(−cz) for c > 0 the following result follows
from Jensen’s inequality
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Lemma 3

Ew∗∗ = EE [w∗∗|m∗] < Ew∗.

The more dispersion there is in the mean-preserving mixture distribution the smaller
is therefore the effective strip half-width. All non-degenerate mean-preserving mixing
distributions are more dispersed than the certain non-mixing distribution. Heterogeneity
in cue intensity will therefore reduce effective strip half-with.

It is possible to quantify the magnitude of the bias under the limit var(α∗) → 0.
Define τ = var(α∗) and write w(α) to make the dependence on α explicit. By Taylor
expansion of w(·) around the mean α = E(α∗) we get

E [w(α∗)] = w(α) +
τ

2
wαα(α) + o(τ), (21)

where
wαα(α) =

∂2

∂α
w(α) = −v−2

∫ ∞

0
R2(x, 0) exp

(
−αv−1R(x, 0)

)
dx. (22)

We note that wαα < 0 in accordance with Lemma 3. Numerical comparison with (19)
in the gamma case shows that the approximation (21) is fairly accurate (1% error), even
when the CV of α∗ is as large as 0.5.

The analysis has so far been conditioned on the value of the parameter vector. In
practice parameters are not known but must be estimated from the data, often with
considerable uncertainty. Whether the sampling variation swamps the bias is an empirical
issue in each particular survey. It is also conceivable to have bias in parameter estimates,
which might counteract or perhaps inflate the bias due to unmodelled heterogeneity.

4 Application to North Atlantic minke whales
The minke whale data described in Skaug et al. [2004] are used for illustration. The
shipborn survey was conducted by the Institute of Marine Research in Bergen Norway
during the period 1996-2001. Each annual survey was conducted in approximately one
six’th of the total survey area, and had an effective coverage of about 1%. The survey
vessels involved were equipped with two independent observer platforms, each consisting
of two individual observers searching for whales by naked eye. We shall refer to the two
platforms as A and B, respectively. The dataset consists of 870 sighted animals, with
trinomial-trial frequencies #A = 446, #B = 315 and #AB = 109. The number of
Bernoulli trials is 623 with outcome frequencies #failure = 546 and #success = 77.

In Skaug et al. [2004] the hazard probability function was specified in polar coordinates
r = (x2 + y2)1/2 and θ = tan−1(x/y), and the following parametric form was used:

Q(r, θ) = µ · l [−λr (r − ρr)] l [−0.1 (θ − ρθ)] {l [λrρr] l [0.1ρθ]}−1 , r, θ > 0 (23)

where µ, λ, ρr and ρθ are unknown parameters and l(z) = exp(z)/ [1 + exp(z)] is the
logistic function. Note that Q(0, 0) = µ. The distance at half detectability ρr was modeled
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as a function of covariates. The best fitting covariate model, expressed in standard GLM
notation, was found to be

log (ρr) = WEATHER + VISIBILITY + GLARE+TEAM

For simplicity, we omit the dichotomous classification of observer teams ’TEAM’. It was
found in Skaug et al. [2004, Table 4] that this covariate affects the abundance estimate
only to a small extent. Table 3 contains parameter estimates under different types of
heterogeneity, and the results are discussed in detail below.

4.1 Que heterogeneity

We consider three different models for the coefficient c in (8): c(r) ≡ c (constant c),
c(r) = exp(−cr) and c(r) = exp(−cr2), where r = (x2 + y2)1/2 is the radial distance. The
first model c(r) ≡ c yields a significant increase in likelihood value, using a chi-square
criterion (#4 versus #1). Among the basic parameters it is mainly the level parameter µ
that is affected. Note that Table 3 shows parameter estimates for the conditional hazard
function (8) for Model 4–6. It is thus appropriate to compare µ = 0.37 in Model 1 to
cµ = 0.24 in Model 4. This decrease in µ leads to a reduction in the ESHW.

Allowing c to vary with r yields a further increase in likelihood value, with the model
c(r) = exp(−cr) having the best fit. It is not straight forward to compare the parameter
values across these models, but both of the models have ESHW larger than that for the
model with a constant c.

Figure 2 shows the conditional detection function gA|B(x) for Model 4–6. It is seen
that Model 5 and 6 have an inflated gA|B for x = 1000, and in this sence accounts for some
of the misfit between the model-based and empirical versions of gA|B seen in Figure 1 (left
panel). The model with constant c agrees with the Model 1, and is hence not able to
explain the misfit.

4.2 Heterogeneity in cue rate

Dive time data have been obtained by VHF-tagging of 10 minke whales in the north-
eastern Atlantic [Schweder and Øien, 2007] . There is about as much variation in dive
pattern within as between individuals. Excluding initial periods when the individuals
might be somewhat influenced by the tagging, and counting the number of surfacings in
consecutive time intervals of different length, a pattern of overdispersion relative to the
Poisson distribution emerges for intervals of length less than about 4 minutes, but for
longer intervals the counts are underdispersed. This is due to the rhythmic. After a long
dive, the minke whales tend to take a few short dives before the next long dive. Mean
and variance of count by interval length for the pooled data are shown in Table 2. The
variance to mean ratio is also shown.

Under optimal sighting conditions a minke whale on the track line has a minute chance
of being detected if surfacing one mile ahead of the observer. Skaug et al. [2004] actually
truncated observations at radial distance 2000m. It takes 6 minutes for the sighting vessel
to move this distance. Most of the of the time the sighting conditions are less than optimal.
The mean forward distance to initial sighting is about 500m. Thus 2 minutes might be
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taken as a reference period for which whales are sightable. Using this, the moment method
yields parameter estimates of the mixing gamma distribution (18) for α∗ to λ̂ = 5 and
â = 3.65. This corresponds to E [α∗] = â/λ̂ = 0.012 and V ar [α∗] = â/λ̂2 = 0.146. For
simplicity, a two point distribution, with point masses 0.5 at 0.73 ±

√
0.146 is used to

approximate the distribution of α∗, when fitting the likelihood function.
Parameter estimates are shown in Table 3. By comparing the likelihood values of

Model 1 and 2, it is seen to the model with heterogeneity (#2) has the worse fit, apparently
indicating that surfacing rate heterogeneity is not present in the survey data. This finding
is somewhat strange, given the above discussion. Further, we note that the parameter
βr is decreases when we take account of heterogeneity, as is expected from the fact the
heterogeneity tends to move observations to a larger distance. This fact, in combination
with the effect in Lemma 3 causes a reduction in the ESHW.

4.3 Heterogeneity in hazard probability

We now allow the level parameter µ occurring in (23) to be random, and assume the
following two-point distribution: Pr (µ∗ = µ1) = Pr (µ∗ = µ2) = 1

2
, where µ1 and µ2

(µ2 ≥ µ1) are parameters to be estimated. In contrast to the previous section, we are
here estimating the amount of heterogeneity from the survey data. A likelihood ratio
test only barely rejects the hypothesis µ1 = µ2 (p-value = 0.04 when testing #1 against
#3). However, the estimates of µ1 and µ2 differ quiet a bit, and this causes a substantive
reduction in the ESHW.

4.4 Combined effects

Table 3 also gives results for the combined effects of the various random effects. In most
cases, the estimated positive bias in effective strip half-width is larger the more sources of
heterogeneity that is neglected. The exception is µ∗. When this individual heterogeneity
in cue strength is combined with cue strength variability within individuals of the form
in Model #5, the estimated effective half-with remain unchanged. This is also the case
when cue rate varies between individuals, see columns 8 and 10.

The log likelihood values in the bottom row identify Model #5 as the best fitting
model. Neglecting this type of perceived cue strength variability inflicts a positive bias of
about 19% in effective strip half-width, with a corresponding negative bias in abundance
estimates. The coefficient of variation is about 5% in estimated effective strip half-width
(platform A) in Model #1, and about 5% in Model #5. The bias seems therefore not to
be swamped by estimation uncertainty for data of this type and size.

5 Discussion
Heterogeneity comes about for various reasons. We consider only heterogeneity as random
variation taking place during the short period individuals are in sightable range, and which
is not a response to the approaching observer. Responsive movement as discussed by Palka
and Hammond [2001], and also response in the cue activity is thus ruled out here. Thus,
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we do not consider the possibility of whales being attracted to or scared away from the
approaching vessel, or that they might take longer or shorter dives than they otherwise
would.

Variation in cue strength within individual could come about in different ways. In
whale surveys, the angle between body length and motion on the one side and the sight-
ing direction could vary. In the Norwegian minke whale surveys, the term "motfisk" and
"etterfisk" have been used for cues when the whale swims either towards or away from
the observer, and "tverfisk" when it shows the length of its back. Schweder et al (1993)
reports a negative bias on the abundance estimate of some 16% when excluding observed
whale angle from the data. Incidentally, whale angle was excluded in that study since its
measurements were considered less than reliable. Rather than including such measure-
ments of dubious quality, it might be better to allow their effect to show up in the model
as latent variables, as suggested here.
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Table 1: Example of a track of cues made by an individual during the period it was in
detectable range. The table also indicates which cues were detected by each of the two
observers (×), and the resulting data used for likelihood estimation. Cue #5 does not
count as a Bernoulli trial, as both observers are aware of the animal at this stage. In
reality, recorded positions will differ between observers due to measurement error, which
may make it difficult to match cues between observer A and B.

Cue # Position Observer Data
x y A B Initial Trinomial trial Bernoulli trial

1 340 850
2 340 700 × (x, y) u = A
3 340 640 × Failure
4 340 350 × × Success
5 340 220 × × Ignored

Table 2: Mean and variance of number of surfacings in consecutive time intervals of
various length, pooled over 10 individuals.
Interval (min.) .5 1 1.5 2 2.5 3 3.5 4 4.5 5
mean 0.36 0.73 1.09 1.46 1.82 2.19 2.55 2.92 3.28 3.65
variance 0.43 1.06 1.65 2.04 2.32 2.51 2.62 2.91 3.21 3.50
variance/mean 1.18 1.46 1.51 1.40 1.27 1.15 1.03 1.00 0.98 0.96
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Table 3: Estimated regression coefficients (standard deviations not shown) for the different
models fitted to the minke whale data. The parameters βr and βθ are the intercept terms
in the linear predictors ηr and ηθ, respectively. Following the βr row, the coefficients
associated with covariates are given: W = Weather, V = Visibility, G = Glare and B =
Platform-B effect (see Skaug et al. 2004 for definitions). Effort weighted mean effective
strip half-widths (w̄A and w̄B) are also given. Loglikelihood and AIC values are given
relative to Model 1.
Model# 1 2 3 4 5 6 7 8 9 10
Het. type No Individ lev. Que level Combinations

α∗ µ∗ c e−cr e−cr2 2&3 2&5 3&5 2&3&5
βr 6.54 6.50 6.53 6.62 6.96 7.00(b) 6.49 6.96 6.96 6.96
WBI 0.39 0.40 0.4 0.38 0.42 0.75 0.41 0.43 0.42 0.43
WBII 0.09 0.09 0.09 0.07 0.04 -0.03 0.10 0.04 0.04 0.04
VHigh 0.20 0.21 0.21 0.21 0.25 0.25 0.22 0.25 0.25 0.25
G0 0.15 0.15 0.15 0.15 0.17 0.35 0.16 0.17 0.17 0.17
B -0.16 -0.16 -0.16 -0.15 -0.19 -0.27 -0.16 -0.19 -0.19 -0.19
ρθ 92.72 93.28 92.89 91.89 91.45 91.97 93.45 91.89 91.45 91.89
µ1 0.37 0.38 0.20 0.47 0.37 0.32 0.20 0.38 0.37 0.38
µ2 0.37 0.38 0.50 0.47 0.37 0.32 0.51 0.38 0.37 0.38
c(a) 1.00 1.00 1.00 0.51 1.20 10.06 1.00 1.28 1.20 1.28
100 · λr 0.50 0.50 0.50 0.51 0.45 0.40(b) 0.50 0.44 0.45 0.44
w̄A 270 253 245 207 219 242 231 204 219 204
w̄B 227 214 206 172 184 205 197 173 184 173
∆loglik 0 -2.7 2.1 14.4 21.3 18.6 -0.1 20.2 21.3 20.2
∆AIC 0 5.4 -2.2 -26.8 -40.6 -35.18 2.2 -38.4 -38.6 -36.4

(a)The interpretation of the parameter c differs between models. For Model 5 (and its
derivatives) the tabulated value is c′ = c · 1000 and in Model 6 the tabulated value is
c′ = c·(10002 ·10). The log-likelihood is shown relative to the model without heterogeneity.
(b) On boundary of parameter space.
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Figure 1: Estimated detection functions for the minke whale data for a model without
covariates. The nonparametric estimate (“empirical” in left panel) of gA|B(x) is obtained
using the R-function “loess” as explained in the main text; the vertical bar represents a
95% confidence interval. The function GA|B is the mean of gA|B when random heterogenity
is added to the parameter ρr as explained in the main text. The level of heterogeneity
corresponds to the effect of covariate variation estimated in Skaug et al. [2004].
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Figure 2: Conditional detection function gA|B(x) for the different models of heterogeneity.
Model numbers are with reference to Table 3. The reference covariate stratum is used,
i.e. ρr = exp(βr).
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