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Spatio-temporal modeling of relative animal density
using a long time series of line transect surveys with

clustering and censoring

G. H. Givens∗,†

Abstract

We introduce a probability model for data arising from aerial line transect surveys,
with the goal of estimating relative animal density. This model includes considera-
tion of animal clustering and censored observations due to effort truncation and flights
with zero animal sightings. It also includes terms for spatio-temporal covariates that
affect detection probabilities and animal presence. Approximate model fitting is accom-
plished using generalized additive modeling techniques for censored data. Estimation
of uncertainty relies on bootstrapping. This model was motivated by study of a large,
long-term dataset of bowhead whale surveys in the western Arctic. The fitted model
is shown to map the spatio-temporal pattern of the fall bowhead migration effectively.
Additional model terms may be added to test for potential localized zones of unusual
scarcity or abundance such as what could be introduced by avoidance of industrial
activities or hunting, or by variation in prey availability, whale behavior, or other en-
vironmental factors. Although localized scarcity phenomena are supported here by
significant statistical evidence, the causes are not well understood.
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1 Introduction

In many wildlife management and conservation biology problems, it is important to esti-
mate an index of relative animal abundance. This estimate, indexed over space and/or
time, describes the number of animals in any spatio-temporal region up to a proportionality
constant. Relative abundance indices are important for understanding the spatio-temporal
distribution of animals and can capture such signals as local abundance due to abundant
feeding resources, aggregations in a breeding region, and migratory patterns.

As suggested by the examples of feeding, breeding and migration, relative abundance
may be strongly related to spatial, temporal or other covariates. Key to understanding
the ecological and management issues for the surveyed population is the ability to link the
relative abundance index to such external covariates.

We focus here on abundance data obtained from single-observer aerial line-transect sur-
veys. Alone, such data can be used to estimate the marginal relative abundance. With
records of covariate data (usually contemporaneous and localized), the abundance index can
be related to the effects of such variables. Furthermore, the nature of the relationships be-
tween covariates and abundance is often itself a primary scientific question. For example,
consider an aerial survey of animals over a region of variable habitat. Animal presence may
be strongly affected by food resources that vary with vegetation across the survey area. The
ease of detecting animals may also vary, due to the variation in vegetative cover. To fully
understand relative abundance then, estimates should adjust for the effect of vegetation on
sighting and also facilitate understanding of how animal presence depends on habitat.

This paper is divided in three main parts. First, we develop a likelihood function for
situations where data are obtained from a collection of line transect surveys and spatio-
temporal covariates. Although this likelihood is comprehensive and could be numerically
maximized in principle, it is sufficiently complex that more pragmatic estimation strategies
are attractive. Second, we illustrate a simplification of the general model that can be used
to draw inference about spatio-temporal relative abundance and covariate effects. Finally,
we apply the method to a large dataset for bowhead whales. By no means is this application
simple: it provides a realistic example that has important implications for the scientific
understanding, conservation and management of these whales.

1.1 Line transect surveys

The models here relate to line transect surveys. To conduct a line transect survey, a survey
region is selected. Interest in relative abundance is limited to this region, which is sometimes
believed to cover the entire range of a distinct subpopulation, although this latter assumption
is not necessary. The survey effort is conducted along a sequence of line segments superim-
posed over the region. These ‘tracklines’ must be laid down randomly over the region with
respect to the distribution of animals. The surveyor then travels along the tracklines, trying
to detect animals. Each sighting is recorded, along with the animal’s perpendicular distance
from the trackline, the observer’s location along the trackline, and any covariates.
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Since detection of animals generally decreases with their distance from the trackline, the
relative abundance of sightings along the trackline must be corrected for sighting distances.
Adjustments rely on a ‘detection function’, g, for which g(y) denotes the probability of
sighting an animal given that it is located at distance y from the trackline. Except for
special types of surveys, one assumes g(0) = 1. Let w denote the distance from the trackline
beyond which it is reasonable to assume that detection is effectively precluded, or the distance
beyond which the data are truncated by removing more distant observations from analysis.
Truncation of distant cases is often reasonable because estimation of the shape of g can be
sensitive to such outliers.

Suppose that one wishes to produce relative abundance estimates for two portions of the
survey region, with areas A1 and A2, with corresponding total on-effort transect lengths of
L1 and L2. Then, the corresponding areas where sightings could have occurred are given by
ai = 2wLi for i = 1, 2. If all ni animals are detected in Ai then under certain assumptions
including issues of randomness and measurement error (see Buckland et al., 2001) the density
of animals within Ai is the number of animals per unit area, ni/2wLi.

Of course, only a portion of all available animals are sighted. In this case, ni denotes
the number of sightings. Let Pi denote the proportion of animals in region Ai that are
sighted. Then adjustment for the proportions of sighted animals produces density estimates
of ni/2wLiPi. Finally, making a further adjustment for the sizes of A1 and A2, we obtain
the relative abundances of Di = Aini/2wLiPi.

In practice, counts like ni are observations of random variables, and Pi must be estimated
from the sighting data. The unconditional probability of detecting an animal in a strip of
width 2w and length Li is Pi = 1

w

∫ w
0
g(y) dy. Estimation of Pi boils down to estimation of

g. Thomas et al. (2006) and Buckland et al. (2001; 2004) describe a method for estimation
of g based on the collection of observed sighting distances.

1.2 Whale data

The purpose of this paper is to develop and apply appropriate spatial line transect methods
for analysis of a dataset pertaining to migratory whales in the western Arctic, namely the
population of bowhead whales (Balaena mysticetus) in the Bering, Chukchi, and Beaufort
Seas. A key goal is to produce a spatio-temporal map of relative abundance.

The bowhead whale is a migratory species. The population studied here winters in the
Bering Sea and generally follows the Chukotkan and Alaskan coasts northeast during the
spring. In spring and early summer the whales pass through the Chukchi Sea. Most continue
east to summer in the eastern Beaufort Sea feeding grounds. As fall begins, the bowheads
return west and generally cross the Chukchi Sea to reach the north coast of the Chukotkan
Peninsula before traveling along that coast back to their wintering grounds. Descriptions of
the migration are given by Rugh et al. (2003) and Moore and Reeves (1993).

In 1979 the Bowhead Whale Aerial Survey Project (BWASP) was initiated by the US
Bureau of Land Management to study the possible effects of industrial activity on the marine
and coastal environment in the Beaufort Sea. A proposed oil and gas lease sale prompted
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this project, and industry impacts continue to be a motivation in recent years. Responsibility
for the survey has shifted to the US Minerals Management Service (MMS), the Naval Ocean
Systems Center and affiliated MMS contractors.

The BWASP dataset includes records of many aerial survey flights each year from 1979
to 2008, ranging through the Chukchi and Beaufort Seas and during all portions of spring,
summer, and fall. Most flights occurred in fall over the Beaufort Sea.

The BWASP data can be used to address several important concerns about bowhead
whales and resource management. Research about these whales is hampered by challenging
weather and ice conditions, with only a limited portion of the year providing both whale
presence and suitable observation conditions. Although many migratory observations and
some tracking data exist, a comprehensive and precise spatio-temporal map has been beyond
reach. Thus, the first goal of our BWASP analysis is to map the migration. Beyond the
descriptive value of such a map, it will also useful as a baseline for future study: as the Arctic
continues warm and sea ice retreats, the impacts of changing environmental conditions and
human activity must be compared to earlier conditions.

Second, BWASP data are valuable to address issues related to bowhead hunting by
native Inupiat and Yupik communities in northern and western Alaska, who rely on limited
hunting quotas to satisfy their subsistence and cultural needs. This hunting is regulated
by the International Whaling Commission. Changes to bowhead migratory patterns could
reduce availability of whales to the hunters and require villagers to venture greater distances
at greater risk. It is of concern, therefore, to assess whether any deviations from the standard
migratory path might be correlated with anthropogenic impacts or other factors. Impacts
could include spatio-temporal displacement or behavioral changes (e.g., swimming unusually
quickly through a region). Aside from acute phenomena, areas of low apparent whale density
may be attributable to a variety of other factors like prey availability or other environmental
factors.

Previous use of the BWASP data has been limited. Manly et al. (2007) explored how
human activities affected bowhead distribution using a Poisson regression approach applied
to only 1996-1998 data. They found evidence that seismic activity is associated with reduced
abundance and perhaps with swimming direction. Schick and Urban (2000) showed that
bowhead whale distribution patterns were correlated with distance to oil rigs. Treacy et al.
(2006) sought to link annual variation in ice distribution to migratory patterns.

A detailed description of the BWASP survey methods is given by Treacy (2002) and
Monnett and Treacy (2005). Our brief summary follows that of Givens et al. (2009). Survey
effort was concentrated in the fall between 140◦W and 157◦W longitude and south of 72◦

latitude. The total survey area was divided into 12 blocks as shown in Figure 1. Our analysis
is limited to this region and to the period from August 28 to October 23. These limitations
retain the vast majority of the fall BWASP data. A flight was deemed to be within the study
area if no more than 10% of the plane positions recorded during the flight were outside the
study area. This eliminated some spring flights and some flights over remote regions of the
arctic outside the survey area, but no flights relevant for our analysis. Data for flights before
1982 were excluded due to differences in survey protocol and equipment. Data through 2006
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Figure 1: Map of BWASP survey blocks (Monnett and Treacy, 2005). Used with permission.

were available at the time of analysis. Figure 2 shows all sightings meeting these criteria.
Notwithstanding the visual impact of Figure 2, the BWASP data are in fact very sparse.

If the survey region is divided into spatio-temporal blocks of 100km2 × 1 week, the average
number of blocks per sighting is 63, and that increases to 150 blocks when limited to the
dataset we used (the ‘on-transect’ sightings; see below).

From 1982 through 2006, each year included between 23 and 93 flights. The pattern
of block coverage was chosen somewhat opportunistically based on prevailing weather, a
desire to investigate regions of potential industrial impact, and sometimes on suspected
migration patterns. The latter choice violates one of the key assumptions of standard line
transect analysis: that the transect lines should be randomly placed with respect to the
distribution of animals. East of 154◦W longitude, two-week spatio-temporal coverage was
disproportionately targeted toward areas of suspected higher relative abundance. Thus,
survey effort was relatively greater in regions near shore, thereby increasing total sightings
by focusing on the primary migration corridor.

All flights began from Deadhorse, Alaska, near Prudhoe Bay. For a chosen survey block,
a random transect grid was determined by dividing the block into 30-minute sections of
longitude. Minute marks along both the northern and southern edges of each section were
randomly chosen and connected with straight lines to create transect legs. This procedure
was repeated for all 30-minute sections within the chosen block. Northern and southern
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Figure 2: Map of all bowhead sightings within the spatio-temporal region used for the
BWASP analysis. Each point indicates one cluster. Bathymetry contours from 5m to 65m
in increments of 10m are shown with gray lines.

transect ends were connected alternately to form a flight path, with the first and last transect
points connected to Deadhorse. One result of this design is that regions near the east and
west boundaries of these 30-minute sections had comparatively less effort (M. Ferguson, US
NMML, pers. commn). Flight deviations from the transect pattern were common due to
flying conditions, sighting conditions, and other factors. Sighting distances were measured
perpendicular to the transect line abeam of the plane and computed from altitude and
clinometer readings. The nominal flight altitude was 458m.

The nature of survey effort varied during the flight. Each flight can be partitioned into
discrete segments, with start and end points established by particular events during the
flight. Each segment was labeled based on those events. The events that separated seg-
ments indicated initiation or termination of effort, sightings, and opportunistic records of
survey conditions and covariates. The spatio-temporal location of every event was recorded.
Flight segments to and from Deadhorse were denoted ‘on-search’, except that all flight por-
tions over land were denoted as ‘deadhead’. Segments wholly contained within a transect
leg were denoted ‘on-transect’, with segments on connective legs between transects denoted
‘on-connect’. Transect legs began and ended with ‘start-transect’ and ‘end-transect’ events.
Normally sightings occurred at events labeled ‘sighting-on-transect’ or ‘sighting-on-connect’.
Occasionally, a possible cue or tentative sighting was detected. To investigate, a ‘divert-
transect’ event was recorded and the flight continued with ‘on-search’ segments until a
‘resume-transect’. During on-search effort, the goal was to confirm or refute that the pos-
sible sighting was a bowhead. Confirmation resulted in recording the sighting as occurring
on-transect immediately before the divert-transect event. These on-search periods were gen-
erally characterized by a limited period of circling. If at any time during the on-search period
additional whales were sighted, they were recorded as ‘sightings-on-search’. Perpendicular
distances to on-search sightings were measured in the same manner as other sightings, to the
extent possible. Aside from rare missing data, every sighting was accompanied by measure-
ment of covariate data such as sighting conditions. The covariate data were also recorded
at convenient times between sightings. These events were labeled as ‘point-on-transect’,
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‘point-on-connect’ and ‘point-on-search’. These extra data present a complication beyond
the simpler protocol where covariates are measured only at sightings. BWASP observers
recorded sightings of animals besides bowheads, but we treated these as points on segments
rather than sighting events. Rare circumstances required ‘abort-flight’ events.

The bowhead migration is age- and sex-structured during spring and fall (Moore and
Reeves, 1993; Angliss et al., 1995). Also, at various places and times—such as for feed-
ing aggregations—substantial clustering is observed. Although we have implied above that
sightings correspond to animals, the reality is that sightings pertain to clusters. The number
of animals in the cluster is one of the covariates recorded. Other covariates we examined
included Beaufort sea state, ice coverage, day of sighting, and year of flight. Of course, the
geographic coordinates of each event were also included in the BWASP dataset. Rather than
use these directly, we re-expressed them as follows. We calculated the standardized distance
of each event along an idealized shoreline linearly connecting the tip of Point Barrow to the
shoreline at the Canadian border. Due to the nature of the shoreline along the north slope
of Alaska, our shoreline distance measurements are quite similar to units of longitude. We
replaced latitudinal positions with bathymetry data. Using a GIS database of bathymetry,
each sighting was associated with the water depth at the sighting location (NOAA, 2008).
Figure 2 shows contours of water depth from 5m to 65m in increments of 10m. Depth is
strongly correlated with distance offshore, and analyses below indicate that depth has greater
predictive power than distance off shore. There is a notable trough near Barrow (the Barrow
Canyon) and the eastern Beaufort is generally shallower than the west. Bowhead feeding
occurs mainly in the summer, in shallower water, and with greater clustering (Würsig and
Clark, 1993; Griffiths and Buchanan, 1982; Wartzok et al., 1990). The predominant bathy-
metric zone of migration in the Beaufort Sea is 20-49m depth (Würsig and Clark, 1993). For
analysis, sightings at depths exceeding 65m were excluded, eliminating a few extreme and
rare observations with depths up to nearly 3000m.

2 Model Introduction

Now we focus on detailed and comprehensive modeling of the spatio-temporal relative density
of bowheads and the relationship between density and various covariates. The approach here
is built upon an underlying model introduced by Hedley and Buckland (2004). Hereafter we
recognize their work as ‘HB’. After reviewing their model, we later describe our approach.

Initially, assume that all data are from a single flight. For an aerial line transect survey
with non-overlapping strips, parameterize the location of a point within the strip using a
local coordinate system with x denoting the distance along the flight line from its origin
to the orthogonal projection of the point onto the line, and y denoting the perpendicular
distance away from the flight line (with negative values arbitrarily corresponding to the left
side of the plane). The |y| distances are truncated at a (possibly infinite) distance, w. Let
g(x, y) be the detection function, i.e., the probability of detecting an animal located at (x, y).

Let x0 and xn+1 denote the locations of the start and end of survey effort, respectively,
for a flight. Let x1, . . . , xn denote the locations of the n animals detected during the survey.
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The starting location is given by x0 = 0 and effort ceases as xn+1. Defining li = xi − xi−1

for i = 2, . . . , n, note that li denotes the “waiting distance” between sightings i − 1 and i.
Correspondingly, let l1 and ln+1 denote waits until the first sighting and after the last.

Let D(x, y) be the rate of an inhomogeneous Poisson process that governs the location
of animals within the survey area. HB make the following assumptions about g(x, y) and
D(x, y):

1. The Poisson intensity of animals is independent of the distance of the animal from the
flight line: D(x, y) = D(x). One reason this assumption is plausible is because the
width of the survey strip is typically very small compared to the length of the track
and total survey area, so wide-scale variation swamps any small variation across the
strip.

2. The detection function is independent of the distance along the flight line and sym-
metric with respect to the distance off the track: g(x, y) = g(y) = g(−y).

3. Detection of animals directly under the plane is perfect: g(0) = 1. Only in surveys with
multiple observers or similar resighting opportunities can this assumption be relaxed.

4. Sighting distances are not correlated with location along the track: x and y are inde-
pendent.

Letting fl,y|x, fl|x and fy denote the probability density functions of their respective
subscripts, we can write the joint density of the observations as

fl,y|x (l,y, |x) =

(
n∏
i=1

fl|x (li|xi−1)

)
PrL|x [Ln+1 > ln+1|xn]

n∏
i=1

fy (yi) (1)

where l = (l1, . . . , ln+1), y = (y1, . . . , yn), x = (x0, . . . , xn), and the middle term above occurs
because the last waiting distance is censored by the end of the flight.

The derivation of fl|x begins by noting that when the inhomogeneous Poisson process
with rate D(x, y) is thinned by an independent sighting process governed by g(x, y), the
locations of detections are realizations of a thinned inhomogeneous Poisson process with
rate D(x, y)g(x, y). Also, detections of a distance y off the trackline have probability density
fy(y) = g(y)/2

∫ w
0
g(y)dy (e.g., Buckland et al., 2001). Define the effective strip half-width

to be µw =
∫ w

0
g(y)dy. Then the cumulative distribution function Fl|x can be expressed as

Fl|x (li|xi−1) = 1− Pr [no sightings in first l i distance beyond xi−1]

= 1− exp

{
−
∫ w

−w

∫ xi−1+li

xi−1

D(x, y)g(x, y) dx dy

}
= 1− exp

{
−
∫ w

−w
g(y)

∫ xi−1+li

xi−1

D(x) dx dy

}
= 1− exp

{
−2µw

∫ xi−1+li

xi−1

D(x) dx

}
. (2)
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For modeling spatial relative density, parameterize the spatial distribution and detection
processes by vectors α and β respectively so D(x) = Dα(x) and g(y) = gβ(y). Differentiation
of (2) and substitution into (1) yields the likelihood

L (α,β|l,y,x) =

(
n∏
i=1

Dα (xi)

)
×

exp

{
−2µw

n+1∑
i=1

∫ xi

xi−1

Dα(x)dx

}
n∏
i=1

gβ (yi) (3)

after simplification.
Often the detection function depends on, say, J covariates observed along with yi, namely

vi = (vi1, . . . , viJ). In this case, the detection function can be replaced with gβ(yi|vi). The
covariates vi should comprise variables that affect aspects of the effective search effort. Since
the BWASP protocol provides observations of covariates at locations aside from at xi, the
vi should be considered data that are associated with the sighting attempt—not necessarily
measured only upon sighting. The collection of all vi in the dataset will be denoted v.

An over-simplification of this model would be that whale sightings occur along the flight
lines according to a homogeneous Poisson process. Then the waiting distances between
detections would be exponentially distributed. A compromise between the fully inhomo-
geneous model and simple homogeneity is explored by HB. They consider the assumption
that the density of whales and the expected encounter rate are constant during each waiting
period but may change at each sighting. With this assumption, each li has an exponential
distribution with parameter λi.

The presence of a whale can depend on, say, K covariates. Denote these with the vector
zi = (zi1, . . . , ziK). For example, zi may include ocean depth and day and year of flight. The
collection of all zi data will be denoted z.

Under the piecewise exponential model, relative density of whales in the strip surveyed
during the waiting period can be estimated using a generalized additive model (GAM) with
linear predictor expressed as

η−1 (E(li)) = θ +
∑
k

fk (zik) (4)

where E(li) = 1/λi, fk are a collection of smooth functions estimated as part of the model
fitting process, each of which expresses the effect of one spatial covariate zk on relative
density. Here, η−1 is the link function; for the above exponential distribution, the log link
η−1(1/λ) = log(1/λ) would be appropriate.

Let l̂i denote the fitted wait for the ith sighting. Then an index of relative abundance at
sites (xi, yi) is proportional to 1/l̂i.

2.1 Expanded Model

Application to the BWASP dataset requires some revision and extension of the above ap-
proach. Topics meriting further consideration include (i) censoring, (ii) clustering, (iii) co-

9



variate effects for both the presence and detection processes, and (iv) covariate measurement.

2.1.1 Censoring

With respect to the above likelihood function (3), we view censoring a bit differently. Clearly
the trailing flight segment after the last sighting yields a (right) censored waiting distance,
ln+1. In our view, the waiting distance between the first instance of effort for the flight
and the first sighting is also a right-censored observation because its duration is known to
exceed l1. In a classic right-censoring situation, a treatment is applied at the initiation of
observation effort and outcomes are censored if observation effort ceases before the outcome
is observed. In the present case, there is no relevance to the direction of time because no
treatment begins when the observation effort begins. Censoring occurs when the timespan of
observation effort fails to cover both endpoints of an inter-sighting distance and we therefore
know only a lower bound for the time between sightings.

Furthermore, the BWASP dataset includes many flights, and many of these yielded no
sightings (‘null flights’). These null flights provide information about relative density nev-
ertheless. Since flights were made on different days, it is inappropriate to string together
waiting distances across days due to changes in covariates. Thus a null flight should also be
treated as providing a censored waiting distance known to exceed the total effort distance
on that flight.

Let ai = 0 if the ith waiting period is censored and ai = 1 if it is not. Then accounting for
all censoring, the joint density of the observations for any single flight given in (1) becomes

fl,y|x (l,y|x) =

(
n+1∏
i=1

fl|x (li|xi−1)
ai × PrL|x [Li > li|xi−1]

1−ai

)
×

n∏
i=1

fy (yi) (5)

and the overall density is the product of such terms over all flights. Aside from the in-
troduction of multiple flights, this revision is inconsequential in (3) because of the form of
Fl|x, however it introduces an important censoring component in our estimation approach
described later.

2.1.2 Clustering

Another important aspect of the BWASP data is that the sightings represent detections of
whale clusters, not individual whales. Clusters may contain one or more whales. Cluster
size can influence detection probabilities. Moreover, clustering varies with space and time for
bowheads due to the nature of their migration and behavioral patterns. Aside from cow-calf
pairs, bowheads tend to cluster in the times and places associated with breeding and feeding
(ref).

To model clusters, we introduce a random variable Ci whose observed value ci is the size
of the cluster observed at (xi, yi). To the previous assumptions we add the assumption that
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waiting period and distance off trackline are conditionally independent given cluster size.
Then f(l, y, c|x) = fl|c,x(l|c, x)fy|c(y|c)fc|x(c|x) since y|c is independent of x.

We also introduce the censoring indicator bi which equals 0 when ci is missing (in which
case only the existence of one or more whales is known) and 1 when it is not. Then for i =
1, . . . , n+1, aibi = 1 indicates a completely uncensored observation (li, ci), while (1−ai)bi = 1
indicates lead censoring and (1− ai)(1− bi) = 1 indicates trailing censoring and null flights.
Now the joint density of the observations becomes

fl,y,c|x (l,y, c|x) =[
n+1∏
i=1

fl|c,x (li|ci, xi−1)
aibi × PrL|c,x [Li > li|ci, xi−1]

(1−ai)bi ×

(∑
c

PrL|c,x [Li > li|c, xi−1] fc|x (c|xi−1)

)(1−ai)(1−bi)
×

n∏
i=1

fy|c (yi|ci)
n∏
i=1

fc|x (ci|xi) . (6)

The term in parentheses marginalizes out c for trailing censoring and null flights, where
cluster size cannot be observed.

2.1.3 Covariate effects for presence and detection processes

Introducing covariate effects v into the detection function as g(y|c,v) is very helpful for the
BWASP data because sighting conditions such as sea state and ice coverage vary greatly
across the region and during the survey season. Similarly, covariates are also important for
modeling the presence process since relative abundance depends on space, time, and other
factors. For the wait li, the presence covariates are denoted zi = (zi1, . . . , ziK). The zi
should be considered to represent data associated with the ith wait, which is not to imply
that they must be observed at xi. One reason for this distinction is that the BWASP protocol
provides covariate observations at many distinct locations between sightings (see Section 1).
For notational simplicity, we incorporate xi−1 into zi. Thus we now write the Poisson delivery
rate as D(c, z). Adapting for all covariate effects, we have the joint density

fl,y,c|z,v (l,y, c|z,v) =[
n+1∏
i=1

fl|v,z (li|ci, zi,vi)aibi × PrL|c,v,z [Li > li|ci,vi, zi](1−ai)bi ×

(∑
c

PrL|c,v,z [Li > li|c,vi, zi] fc|z (c|zi)

)(1−ai)(1−bi)
×

n∏
i=1

fy|c,v (yi|ci,vi)
n∏
i=1

fc|z (ci|zi) . (7)
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It may be unclear initially why the conditional distribution of li is dependent on vi above.
Note that a derivation akin to (2) yields

Fl|c,v,z (li|ci,vi, zi) = 1− exp

(
−2µw(ci,vi)

∫ xi−1+li

xi−1

D (x, ci, zi) dx

)
(8)

where µw(ci,vi) =
∫ w

0
g(y, ci,vi)dy. Using the parameterization like (3) with α, β, and

γ parameterizing the presence, sighting, and cluster processes respectively, we obtain the
likelihood

L (α,β,γ|c, l,y, ) ={
n+1∏
i=1

[
Dα(xi−1 + li, ci, zi)

(
1− Fl|c,v,z(li|ci,vi, zi; α,β)

)]aibi ×

(
1− Fl|c,v,z(li|ci,vi, zi; α,β)

)(1−ai)bi ×(∑
c

(
1− Fl|c,v,z(li|ci,vi, zi; α,β)

)
fc|z(c|, zi; γ)

)(1−ai)(1−bi)
×

n∏
i=1

gβ(yi|ci,vi)fc|z(ci|zi; γ) (9)

There are two important features of this likelihood. First, it is important to note that the
only way that L(α,β,γ) depends on β is through the effective strip half-width, µw(ci, vi,β).
Thus we may write the likelihood as L(α, µw(ci, vi,β),γ). Second, the likelihood involves
clustering in two ways: the distribution of cluster sizes can depend on spatial covariates, and
detection probabilities can depend on cluster size.

In summary, the likelihood is set up so that α parameterizes the dependence of waiting
periods for clusters (l) on cluster sizes (c) and covariates that affect presence (z). The depen-
dence of sighting distances (y) on cluster sizes and sighting covariates (v) is parameterized
by β. The dependence of cluster sizes on presence covariates is parameterized by γ.

2.1.4 Covariate measurement

Finally, note that for BWASP there are (usually) more than one set of covariate observations
associated with a waiting distance. These correspond to a variety of intra-wait segments such
as those created by points-on-transect. To associate covariate values with a wait, we take the
approach of using a weighted average of observations during the wait. The weight for each
segment is taken to be proportional to the length of the segment that leads to the recording
point. Segments with missing covariate values at the endpoint are ignored.

This approach is used for deriving covariates to be used in the analysis of waiting distances
because the observed wait reflects whale density flown over during the wait. We use a different
approach for deriving covariates to used in the estimation of detection probabilities. In this
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Figure 3: Illustration of centered segment weighted averaging. At point p4 a bowhead
was sighted. The covariate values u1, u3 and u4 contribute (in proportion to their respective
surrounding segment lengths) to the average covariate value during the wait until the sighting
(at the fourth point here). The value at u2 cannot contribute because it is missing.

case, we are uncomfortable with the piecewise homogeneous approach that assigns covariate
values from observations only at the initiation of a new waiting period. This strategy is
appropriate when there are no inter-sighting data and waiting distances are short compared
to variation in sighting conditions. For the present case this approach ignores most BWASP
covariate data. Furthermore, over long waiting periods the leading covariate observation
could be an poor summary of conditions at the point of detection. The detection function
describes the probability of sighting a whale (cluster) at a specific distance, given covariates.
The covariates that pertain are those that modify this relationship between distance and
detection. To address this, we retain the assumption that the expected detection rate is
constant over the waiting period but modify the covariate calculation. Again we take a
weighted averaging approach, but the relevant segments are taken to be among those that
surround the sighting. We denote this approach as centered weighting.

Specifically, for centered weighting covariate averages were computed as follows (e.g.,
Figure 3. Each waiting distance comprises a collection of one or more shorter on-effort
segments determined by records of point-on-transect, etc., as described in Section 1. A
covariate average of a waiting distance is defined to be the segment length-weighted average
of the covariate values over all non-missing data during the wait. For a given flight, let M
denote the number of segments, determined by records at points p0, . . . , pM . Denote the
between-point segment lengths as s1, . . . , sM . Let the covariate u be measured at some or all
of the points, where um = 0 if u is not observed at pm. Next, let the indicator Im equal 1 if
um is observed and 0 otherwise. Im will be used to ensure that um contributes to the average
only when Im = 1. Finally, let integers bj ∈ {1, . . . ,M} index sightings and locations so that
bj = k if the jth sighting occurs at pk. The weighted average covariate value corresponding
to the jth sighting is given by

ūbj =
Ibj−1

ubj−1
sbj−1+1 +

∑bj
m=bj−1+1 Imum(sm + sm+1)

Ibj−1
sbj−1+1 +

∑bj
m=bj−1+1 Im(sm + sm+1)

(10)

for j = 1, . . . , B where the total number of sightings on the flight is b ≥ 1, b0 = 0, and
sbj+1 always exists since no flight ends with a sighting. Null flights are handled analogously.
Actually, the above description over-simplifies the definition of Im: there are reasons aside
from missing data when um should not contribute during the waiting period. For example,
any single segment connecting deadhead to abort-flight should not count in the average.

13



2.1.5 Multiple flights

The BWASP data include between 23 and 93 flights per year over nearly thirty years. The
overall likelihood, therefore, is taken to be product of terms like (9) over all flights.

2.2 Model Fitting

Like the original HB likelihood, our expanded version is complex and would be difficult to
maximize directly in most situations. However, some parametric assumptions and estimation
approaches can be adopted to facilitate approximate inference about relative density.

In the generic model described above, the Poisson process is inhomogeneous. A compro-
mise between the fully inhomogeneous model and simple homogeneity is explored by HB.
They consider the assumption that the density of whales and the expected encounter rate
are constant during each waiting period but may change at each sighting. Under this model,
each li has an exponential distribution with a (potentially) unique mean.

This approach can be adapted for our model and its application to the BWASP data.
Assume that cluster size is observed any time that li is uncensored, and adopt the model
that E(li) = exp{−ψi}. This implies that relative animal density is high when ψi is high. It
also suggests using a generalized additive model (GAM) for waiting distances given c and
y, namely

ψi = log λ0 + gc(ci) +
∑
j

gvj(vij) +
∑
k

gzk(zik)+ (11)

A log link function is inherent in (11), and the univariate smooth functions g whose subscripts
correspond to the covariates describe how the variables affect li. This exponential model ef-
fectively replaces fl|c,y(li|ci, yi; α,β,γ) with an alternative parameterization fl|c,y(li|ci, yi;ψi).
The dependence of waiting periods on the presence and sighting of clusters is captured by
gc. For BWASP, we parameterize gc as gc(c|η) which is defined to equal η1 if c = 1, η2 if
c = 2, and η3 if c ≥ 3. We have expressed the other presence effects with smooth functions
gzk and sighting effects with gvj. Of course, the univariate functions g could be replaced or
supplemented with multi-way interaction terms, i.e., smooth functions of several covariates.

For this GAM, the likelihood is proportional to the product over all flights in all years of
terms like

n+1∏
i=1

fc|z(γ|ci, zi)aify|c,v(β|ci,vi, yi)ai
[
(eψi exp{−lieψi})ai(exp{−lieψi})1−ai

]
. (12)

We estimate ψ using the marginal likelihood arising from the distribution of l|c,y. From
our exponential GAM model, then, inference is based on

logL =
n+1∑
i=1

{ai(log f(li|ψi) + (1− ai) logS(li|ψi)} (13)
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where f and S are the density and survivor functions parameterized by ψ and given in the
square-bracketed portion of (12). This can be simplified as

logL =
n+1∑
i=1

{ai(ψi − li exp{ψi}) + (1− ai)(−li exp{ψi}}

=
n+1∑
i=1

ai(ψi + log li)− li exp{ψi} − ai log li

= Q+
n+1∑
i=1

ai log(li exp{ψi})− li exp{ψi} (14)

which follows because
∑

i aili is independent of the components of ψ and Q is a constant.
Note that (14) is identical to the log likelihood for the model where ai ∼ Pois(li exp{ψi}).
This reflects a well-known result in generalized linear modeling for censored exponential data
(McCullagh and Nelder, 1989). Therefore we may estimate the effects expressed by the terms
in ψ using a GAM for a Poisson distribution with mean ai and using the log link, namely

log E(ai) = log li + ψi. (15)

In the GAM framework, log li is an offset and the components of ψ can be estimated using
standard GAM fitting methods Wood (2000; 2004). From the estimates ψ̂i, we can easily
obtain fitted values l̂i corresponding to the exponential version of the model since (13) is
identical to the Poisson likelihood in (15). Specifically, l̂i = exp{−ψ̂i}.

Estimation of sighting probabilities, and hence µ̂w values, can be obtained by applying the
standard DISTANCE approach for estimation of a line transect detection function (Thomas
et al., 2006; Buckland et al., 2001, 2004). Finally, γ are nuisance parameters whose values
are uninteresting for the present purpose because. Thus, given values for the cluster size ci
and for the other covariates, the overall relative density at (xi, yi) can be estimated as

Ri = ci/l̂iµ̂w. (16)

Because of the potentially strong dependencies within a dataset like BWASP, asymptotic
tests of statistical significance for model terms are not appropriate. Furthermore, Wood
(2006) notes that p-values will often be underestimates if smoothing parameters have been
estimated as part of the model fitting. We turn to bootstrapping instead, beginning by
resampling years with replacement. For each instance of a resampled year, flights within
year are resampled with replacement. Finally, for each resampled flight, waiting distances
are resampled with replacement. All bootstrap sampling sizes matched the original data.
This approach preserves some potential correlation since both years and flights are sampling
blocks. It does not divide observations within a flight into blocks. The scarcity of sightings,
censoring, and null flights would complicate such fine-scale blocking.
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3 Application to BWASP

3.1 Model fitting

For the BWASP data, we chose to use only sightings and censored waits recorded on-transect
because the nature of on-connect and on-search effort and data recording were comparatively
poorly understood. GAMs were fit using the approach of Wood (2000; 2004). Model choice
was conducted using forward selection based on AIC values (e.g., Burnham and Anderson,
1998) with an improvement of 2 AIC units required for model expansion. A collection
of possible model terms was identified to ensure that the final model would adequately
address the nature of the fall bowhead migration using key covariates and spatio-temporal
dependencies. The covariates allowed for terms that might contribute to the final model
for waiting distances were cluster size, day, year, ocean depth, and distance along idealized
shoreline.

Modeling the effects of these variables relied foremost on fitting additive univariate and
bivariate tensor product splines as described by Wood (2007). This approach allows modeling
the spatio-temporal pattern of the fall migration which is known to proceed westward with
potential variation in the distance of whales offshore (and therefore variation in depth).
Higher order terms were excluded for simplicity. Appropriate degrees of freedom for spline
terms were simultaneously estimated using the unbiased risk estimator criterion (UBRE) of
Wood (2000; 2004).

Year was expressed as the number of years since 1982. This term can compensate for
known increases in bowhead population size (George et al., 2004) and possible smooth inter-
annual variation in migratory behavior associated with variation in environmental or anthro-
pogenic factors. Abrupt inter-annual shifts are not modeled here.

Effects for cluster size were modeled as an additive effect associated with a categorical
variable having three levels: 1 animal, 2 animals or at least 3 animals. This choice was
motivated by an extremely skewed distribution of cluster sizes, and by the belief that the
relationship (if any) between spatio-temporal patterns of whale presence and cluster size is
highly non-linear in cluster size. Interactions between cluster size and each other variable
were modeled by allowing three separate splines for the other variable–one per cluster level.
During a preliminary exploratory phase, effects for cluster size were also examined using a
variety of other data transformations and using the raw counts. These choices were inferior.

Table 1 shows the resulting sequence of models. At no point was there convincing evidence
that inclusion of cluster size improved the model. This indicates that the arrival rate of
sightings or the inter-sighting waiting distances do not depend on cluster size after controlling
for the other spatio-temporal variables. This result is somewhat counterintuitive. Waits
between clusters are driven by two factors: the spatial distribution of clusters and the relative
detection probabilities for clusters of varying sizes. Apparently, the former variation is
adequately explained by how the covariates affect waiting distances. The latter factor is
discussed below.

In addition to GAM fitting, estimation of relative density relies on corrections for sighting
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Model AIC
t(as,dp)+t(as,yr)+t(dy,dp)+t(yr,dp)+t(as,dy)+ t(yr,dy)+t(dp) 4493.19
t(as,dp)+t(as,yr)+t(dy,dp)+t(yr,dp)+t(as,dy)+ t(yr,dy) 4498.96
t(as,dp)+t(as,yr)+t(dy,dp)+t(yr,dp)+t(as,dy) 4534.31
t(as,dp)+t(as,yr)+t(dy,dp)+t(yr,dp) 4588.46
t(as,dp)+t(as,yr)+t(dy,dp) 4633.10
t(as,dp)+t(as,yr) 4755.18
t(as,dp) 5021.06

Table 1: AIC values for a sequence of models. Abbreviations are: tensor spline (t), day (dy),
depth (dp), distance along idealized shoreline (as), and year (yr).

probabilities, as represented by the estimated effective strip half-widths µ̂w at each sighting.
These corrections were estimated using the method of Thomas et al. (2006) and Buckland
et al. (2001; 2004), which fits a parametric model for detection probabilities as a function of
distance off trackline and covariates related to sighting ease. We used the hazard function
model with no expansion terms. For this estimation only, observations exceeding 5280ft
were excluded to improve model robustness (Buckland et al., 2001). Covariates tested for
their effect on detection probability (in addition to distance off trackline) were: Beaufort sea
state, cluster size, ice coverage, and visibility rating. These variables are explained further
by Treacy (2002) and Monnett and Treacy (2005).

Of the covariates related to detection, only Beaufort sea state significantly altered the
relationship between sighting distances and detection probabilities. Beaufort sea state is a
measure of sea surface action, ranging from glassy to huge waves in hurricane-force winds.
The predominant sea states in the BWASP data are states 1 through 4 (ripples through
small waves), with the mode being state 2 (small wavelets). Very few high sea states were
recorded. We categorized Beaufort sea state into three levels: low (glassy and light ripples),
moderate (small and large wavelets), and high (small waves and worse).

Contrary to expectations, cluster size did not affect the detection function. This may
reflect the fact that most sightings occurred in good sea states and good visibility conditions
with little sea ice. Also, the distribution of cluster sizes is highly positively skewed. There
may be too few data to obtain a reliable estimate of cluster size effects, particularly since
the comparative impact of large cluster sizes is likely most severe at extreme distances but
sighting distances were truncated at 5280ft for analysis. Despite the absence of a significant
cluster size effect in both the GAM model and this detection function estimation, final
estimates of relative density are still adjusted for cluster size using the estimator in (16).

Figures 4 and 5 shows maps of relative whale densities for six days in each of four years.
Darker tones correspond to higher density, and a common relative density scale is used
throughout all 24 maps. Contours show deciles within each image. The axes in each plot
show the distance along the idealized shoreline and the water depth. However, it is important
to note that the relationship between depth and distance to shoreline is distorted on the left
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edge of these images because near shore depths are deeper due to an oceanographic feature
known as the Barrow Canyon. The aspect ratio for these panels was chosen to resemble
actual great circle distances. Together, these maps span most of the temporal and spatial
region of data. The relative densities shown here represent the estimates from the GAM
after full correction for detection probabilities and cluster sizes, as given by (16).

3.2 Relative density estimates

The space-time maps shown in Figures 4 and 5 provide a good representation of the conven-
tional wisdom about bowhead migration while providing substantial new detail. Generally,
they show an abundance of animals in the northeast Beaufort Sea in early fall. Particularly
in more recent years, some of these whales move into the southeast Beaufort to shallower
waters as they begin to move westward. The main migration then begins with a large num-
ber of whales traveling westward toward Barrow in 30-50m of water. Some whales linger in
the east but swim west in smaller numbers as the season progresses. Even in late October
some bowheads may not have headed west. Note that the westward migration cannot be
characterized as a steady stream of whales. Instead, there appears to be a large initial pulse
with numerous dispersed stragglers.

These figures and our results for other years also show substantial iterannual variation,
particularly in the daily westward progress. This variation appears to exhibit both systematic
trends and random fluctuations. Generally, it appears that the migration pulse has become
earlier over the years.

Across the region, densities have increased markedly over the last 20 years. This is
consistent with a time series of ice-based visual and acoustic census data indicating steadily
increasing abundance over the same period (George et al., 2004).

Our maps also provide evidence that a group of whales is already present near Barrow
in late August and that the relative abundance of such whales has increased in recent years.
Although this could reflect an increasingly early component of the migration, it is also
consistent with hunter observations of apparent ‘summer resident’ bowheads off Barrow who
do not travel any further east, summer near Barrow, and rejoin the main migration as it
returns in the late fall. Hunters also report seeing bowheads linger in the east much later in
the season in recent years. Our results are consistent with these reports as well.

3.2.1 Localized relative density variation

Hypothesis motivation Perhaps the most striking aspect of the maps in Figures 4 and
5 is seen north of Prudhoe Bay (and to a lesser extent somewhat west of this). First, there
is an unusual, persistent region of low local abundance (a ‘hole’) in waters less than 30m
deep in the central coastal region. At these longitudes the whales show a strong tendency to
prefer deeper waters (40-50m). Even though the shape and depth of this density ‘hole’ vary
interannually, the general location does not.

The relative scarcity of whales in the ‘hole’ can also be seen in the raw data shown in
Figure 2. Examination of this graph led some scientists to hypothesize that this region rep-
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Figure 4: Fitted relative whale densities for six dates in 1988 and 1993. Higher densities
correspond to dark colors, and all images in Figures 4 and 5 are on a common scale. Contours
represent deciles within each image.
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Figure 5: Fitted relative whale densities for six dates in 1998 and 2003. Higher densities
correspond to dark colors, and all images in Figures 4 and 5 are on a common scale. Contours
represent deciles within each image.
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resents an area of lower relative density. However, when the data are limited to on-transect
records, the ‘hole’ is much less visually compelling. This casts some doubt about the reliabil-
ity of informal observations based on all sightings without correction for effort and sighting
type. Statistical techniques can provide an objective empirical basis for consideration of a
‘hole’.

If the apparent ‘hole’ represents a region of lower relative abundance associated with
anthropogenic factors, it is potentially very important because disturbances to the whale
migration can have consequences for the health and well-being of the whale population, as
well as for local villagers who rely on their subsistence harvest. If the ‘hole’ is related to
environmental factors, it is important to identify them and consider their import for whale
and ecosystem management.

There are many possible hypotheses about the ‘hole’ than could be entertained. Industrial
activities (especially acoustical exploration) might induce spatial deflections such as whales
moving further offshore. There are other plausible explanations for regions of low relative
abundance including environmental factors like prey availability and anthropogenic factors
like aboriginal hunting activity. None of these factors have well-understood impacts, and the
relative plausibility of the corresponding hypotheses is uncertain.

It is also important to realize that regions like the ‘hole’ need not reflect lower whale
density. The apparent scarcity of whales may reflect aspects of availability, namely the
proportion of time during which a whale is able to be detected by the aerial surveyor. In a
region like the ‘hole’, whales may be swimming faster or be spending a greater proportion
of time underwater.

Testing To investigate the apparent ‘hole’, we created several additional covariates. The
first variable (‘hole proximity’) was the great circle distance from the sighting location to the
center of the purported ‘hole’ (148.05◦W, 70.63◦N), as identified by C. Monnett (US MMS,
pers. commn). A more localized proximity variable (‘local hole proximity’) was created by re-
expressing this proximity variable on a scale that provided exponential decay in proximity,
thereby emphasizing the local nature of the ‘hole’. Discrete indicators of the ‘hole’ were
also used. First, we examined a binary variable (‘small box’) that indicated whether the
sighting was in a box encompassing the putative ‘hole’. The box was bounded by 148.70◦W,
147.90◦W, 70.48◦N and 70.74◦N. Next, we expanded the region (‘big box’) to indicate if
the sighting was between 147.90◦ W and 151.06◦ W, with no latitudinal boundaries. Based
on typical swim speeds (Zeh et al., 1993), a bowhead would require only about one day to
traverse the ‘big box’ at a consistent medium to fast swim speed.

If the ‘hole’ represents a disturbance reaction by the animals, one might expect to find
milling, ’lingering’ or‘piling up’ behavior, i.e., increased local density, upstream (east) of
the ‘hole’. Downstream (west) of the ‘hole’, one might expect to find a relative scarcity
of animals for some distance until the effect of the disturbance has waned. To test this
scenario, we created a contrast variable (‘hole contrast’) which equaled −1 for sightings
between 146.25◦W and 147.90◦W, 1 between 147.90◦W and 151.06◦W, and 0 everywhere
else.
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Some of the motivation for studying ‘hole’ comes from scientists’ previous informal re-
views of the BWASP dataset itself. An industry impact hypothesis formed wholly inde-
pendently from the dataset can be based upon the development of BP Exploration Inc.’s
Northstar project built on the submerged remnants of Seal Island a bit northwest of Prud-
hoe Bay and about 54 miles northeast of Nuiqsut. Construction and subsequent operation
of this facility began in 2001. We created a variable (‘Northstar proximity’) that measured
sighting distance from Seal Island since Northstar’s construction. This variable was trimmed
at 37km distance because previous study of Northstar noise had indicated that 37km was
roughly the most distant limit where directional autonomous sea floor acoustic recorders and
sonobuoys detected noise associated with Northstar (LGL, 2004). The noises detected at
greatest distances were generally vessel noises. Finally, a binary variable (‘Northstar disk’)
indicated whether the sighting was within this 37km range. Sample sizes for these variables
are very small.

Results The seven hypotheses represented by these variables are listed in Table 2. Each of
these seven variables was tested separately in the final model with p-values estimated using
our bootstrap approach. Table 2 also provides comments and concerns about each test.

For the ‘hole’, we found that ‘hole proximity’, ‘local hole proximity’, and ‘big box’ pro-
vided significant effects representing scarcity near the ‘hole’, with p-values of p < 0.001,
p = 0.003 and p < 0.001 respectively. The ‘small box’ variable did not show a significant
negative effect. The effect of the ‘hole contrast’ was also significant (p < 0.001), with ‘piling
up’ in the east and scarcity in the west. For the variables related to Northstar, we found
mixed results. The ‘Northstar proximity’ variable did not have a significant effect on relative
density. However, the ‘Northstar disk’ variable was significant (p = 0.001), showing scarcity
in the region.

Discussion Taken together, these results suggest that there are indeed lower apparent
relative whale densities in the tested regions. It is worth noting that the tested regions are
located near the middle of the data region, where estimation variability should be least,
accuracy should be best, and extrapolation is nonexistent.

However, with the exception of ‘big box’ and ‘hole contrast’, these variables are assessed
on a much finer scale than inter-sighting distances. In these cases, sample sizes are very
small. Caution is warranted when trying to infer small-scale effects from a small number of
observations obtained from a survey that is implicitly larger-scale. Therefore, aside from the
‘hole contrast’ and ‘big box’ comparisons, our results are not wholly persuasive.

The significance of the ‘hole contrast’ variable is particularly notable because it provides
evidence that whales are ‘piling up’ before crossing the ‘hole’. This sort of behavior would
seem to be more easily explained as an avoidance reaction than as an effect of prey availability
or migratory route preference. To gain confidence in the avoidance hypothesis, it is critical
to examine whether the ‘piling up’ result could be caused, for example, by higher prey
abundance or behavioral tendencies (e.g., more milling) in that region.
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Hypothesis P-value Comments
‘small box’ 0.900 Small sample size; data-driven hyp.
‘hole proximity’ <0.001 Same as ‘small box’.
‘local hole proximity’ 0.003 Same as ‘small box’.
‘big box’ <0.001 Partially data-driven hyp.
‘hole contrast’ <0.001 Same as ‘big box’.
‘Northstar proximity’ 0.237 Very few points with high proximity.
‘Northstar disk’ 0.001 Very small sample size.

Table 2: Outcomes of hypothesis tests, with associated comments. In each case, the alterna-
tive hypothesis is that relative abundance decreases in the region or for increased proximity
to it.

Behavior Swim Speed
Region swim mill/rest play feed other slow medium fast
East contrast 78 15 3 1 4 31 64 5
West contrast 77 14 5 2 2 26 61 12
Elsewhere 78 12 4 3 3 33 60 7

Table 3: Percentages of behaviors, and separately of swim speeds, for whales in the two
portions of the contrast region and elsewhere.

23



For some sighted animals, behavior was recorded. We classified behaviors into swim-
ming, milling/resting, feeding, playing, and other. Table 3 shows the frequencies of these
behaviors for on-transect sightings. These frequencies are calculated for three spatial ar-
eas: the western contrast area, the eastern contrast area, and everywhere else. There is
no significant difference in behavior between these three regions. This provides no support
for the hypothesis that the contrast finding is related to behavioral differences like milling
tendencies.

Another potential explanation is that the regions of low animal density are related to
increased swim speeds. We examined records of estimated swim speed categories (> 4km/hr,
2-4km/hr, and 0-2km/hr) for the portion of swimming whales where such data were available.
The observed frequencies are shown in Table 3 for the three regions. Although there is no
statistically significant difference in swim speeds (p=0.06), Table 3 shows that there are a
few more fast swimmers in the western contrast block than the eastern one. Such a trend
is consistent with a hypothesis that ‘piling up’ is followed by a period of quicker westward
migration over the next 120km (approximately one day at a consistent medium to high swim
speed).

3.2.2 Temporal trends in localized density variation

Finally, we can ask whether a zone of localized scarcity has changed over time. This could be
informative, for example, if a ‘hole’ is attributed to avoidance behavior and one asks if the
severity of the ‘hole’ has reduced over time as animals become habituated to the disturbance.
To explore the possibility of temporal trends in the ‘hole’ we tested the significance of two
interaction terms involving year: interactions with ‘local hole proximity’ and with ‘big box’.

There was no indication that the effect of ‘local hole proximity’ varied with time. How-
ever, adding an interaction term between ‘big box’ and year yielded a large reduction in AIC
compared to the simpler model with no interaction. Interpreting this interaction effect is
tricky. Among the possible scenarios about temporal changes in the ‘big box’ effect are:

1. Habituation: There has been below-average relative density in the ‘big box’ over the
period but this scarcity weakened over time.

2. Intensification: There has been below-average relative density in the ‘big box’ over
the period and this scarcity intensified over time.

3. New Effect: There was above-average relative density in the region in early years
but relative density has decreased over time to the extent that below-average relative
density has existed in recent years.

4. Other: There are other scenarios about temporal variation that are not pertinent to
this discussion due to the absence of any support for them in our findings below.

The bootstrap yielded 74.5% of simulations supporting the intensification scenario (i.e.,
a negative interaction parameter) and 25.5% supporting the habituation scenario. This
provides no evidence of any consistent time trend in whale density in the ‘big box’ region.
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However, the habituation hypothesis can be split into two possibilities: 1a) Habituation to
the point where there is average or above-average relative abundance in recent years, and 1b)
Habituation with the relative abundance in recent years remaining below average. Among
1a, 1b, 2 and 3, only 1a yields a conclusion that unusually low local abundance in the ‘big
box’ no longer persists. Hypothesis 1a is rejected by the bootstrap (p<0.001). Additionally,
83% of bootstrap simulations supported 1b or 2, with the rest supporting scenario 3. Since
17% of scenarios had above-average relative abundance in the ‘big box’ in early years yet
finished with below-average relative abundance in recent years, we can identify the year in
which the transition occurred. We found that 95% of simulations showed the transition from
over- to under-abundance were in 1986 or earlier. The latest apparent transition was 1991.

In summary, the relative abundance in the ‘big box’ is lower than outside it, and this
phenomenon has persisted over time after correcting for the other factors in our model.
There is no significant evidence that the unusual scarcity in the ‘big box’ is increasing or
decreasing over time, but there is evidence that the phenomenon has been present or at least
emerged in the late 1980’s.

The previous ‘hole contrast’ finding supporting ‘piling up’ to the east and scarcity to the
west could suggest reaction to an acute avoidance. However the above findings about the
apparent lack of interaction between ‘big box’ and year—and the early onset of ‘big box’
scarcity—do not support a scenario of recent avoidance behavior. Instead, they suggest that
scarcity in the ‘big box’ could be the manifestation of some persistent factor that predates
many recent acute disturbances like those that could be attributable to industrial activity.
We are unable to reconcile these two findings or to discard either hypothesis.

3.3 Sensitivity analysis

The BWASP dataset is not ideal. As noted in the introduction, survey effort was not located
purely independently of animal abundances. Regardless of animal abundances, flights did not
cover the entire survey region evenly: effort was lower in regions near the 30-minute section
edges due to the transect design. Moreover, the transects should ideally be perpendicular
to the general (east-west) axis of migration. This last concern is particularly relevant for
bowhead whales because queues of migrating whales are not uncommon and could complicate
relative abundance estimates when a transect traveled along a queue. Such concerns about
the sampling scheme motivated sensitivity analysis. We analyzed several artificial datasets
to assess sensitivity, and we report three main findings here.

In the first artificial dataset (‘Western Oversampling’) we identified all waits west of
the median location. The ‘Western Oversampling’ dataset consisted of the original data
supplemented by two more copies of each western record. This scenario was designed to
mimic the situation where surveyors applied preferential effort in some geographical regions
for reasons unrelated to whale abundance. Aside from obvious cases, note that edge effects
from survey design are an example of such a scenario.

In the second artificial dataset (‘Short Wait Oversampling’) we identified all waits ex-
ceeding the median. The ‘Short Wait Oversampling’ dataset consisted of the original data
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Figure 6: Comparison of profiles of estimated relative densities for three sensitivity analyses.
The solid line is the fit to the original dataset. See the text for description of the three other
fits.

supplemented by two more copies of each record with a waiting time below the median.
Recall that short waits correspond to higher animal density. This scenario was designed to
mimic the situation where effort is intentionally concentrated where the whales are believed
to be present (more short waits); it is also conceptually analogous to targeting areas of
believed scarcity (more long waits).

The third artificial dataset (‘Western Short Wait Oversampling’) consisted of the original
dataset and two additional copies of any record triplicated in both of the previous datasets.
In other words, short waits in the west were triplicated.

Figure 6 compares fits for relative density as a function of location along the shore,
profiled at 30m depth for September 25, 2003. The dotted, dashed, and light dashed lines
show the fits to the ‘Western Oversampling’, ‘Short Wait Oversampling’, and ‘Western Short
Wait Oversampling’ datasets, respectively. The solid line is the fit to the original dataset.
Figure 6 shows that the ‘Western Oversampling’ fit is nearly superimposed over the original
fit. The ‘Short Wait Oversampling’ fit is similar in shape but shows consistently higher
relative densities everywhere. The ‘Western Short Wait Oversampling’ fit is qualitatively
similar to the others, but the ratio of the relative density in the west compared to the east
is increased compared to the original fit.

The ‘Western Oversampling’ result can be understood using the analog of simple linear
regression. If all the points on the left half of the regression scatterplot are triplicated, the
fitted line should remain approximately unchanged. The ‘Western Oversampling’ sensitivity
result in Figure 6 confirms that flying disproportionately in certain geographic regions should
not, by itself, substantially alter relative abundance estimates. The nature of our analysis is
that its estimation relies on information akin to sightings per unit effort, not raw counts of
sightings.
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The ‘Short Wait Oversampling’ results are also easily understood. In the BWASP dataset,
short waits are distributed roughly uniformly across longitudes. Therefore, the excess short
waits yield higher estimates of relative abundance without causing much change to the shape
of the fit. Since relative abundance is determined up to a multiplicative constant, the result
seen in Figure 6 would have no real impact on conclusions.

In the third case (‘Western Short Wait Oversampling’), the artificial dataset has more
short waits overall but proportionally fewer short waits in the eastern half of the region
compared to the ratio in the original dataset. Figure 6 shows increased density isolated in
the west. This result confirms that when whales are particularly abundant in a specific area
and survey effort is particularly focused on that area, bias is possible.

Overall, these sensitivity results are fairly reassuring for creating maps like Figures 4
and 5. Not only to they suggest that our estimation method responds in the expected way
to various sorts of changes to the data, but also they partially allay some concerns about
the BWASP analysis. Non-uniform spatial coverage is only a limited concern except when
effort is related to systematic patterns of animal presence. Even then, in our example, the
qualitative shape of the estimated map is not greatly affected despite tripling the signal for
high abundance in a target region.

4 Discussion

4.1 Model structure

The model of piecewise homogeneity merits further consideration. This approximation to
full inhomogeneity is not tied to an explicit sampling resolution, in that the locations of
covariate observations need not be linked to the scale over which they are likely to influence
abundance. In fact, BWASP covariates were generally recorded substantially more frequently
than sightings. This may partially mitigate the concern because it allows (through local
averaging) some influence of smaller-scale covariate variation without precluding large-scale
effects.

With respect to the assumption of piecewise homogeneity, animal density might reason-
ably be considered approximately constant over short waits, however for sightings very far
apart the assumption of homogeneity is less credible. The same issue arises for covariates
and sighting conditions: these are unlikely to be constant over long inter-sighting distances.
HB propose an iterative method for adjusting for this concerns. Their approach relies on
a nonlinear transformation of waiting distances to adjust for the estimated densities at the
sighting locations. We have not implemented any adjustment for potential inhomogeneity
in density between sightings here.

We have implemented an alternative approach (described above) for addressing inho-
mogeneity in covariates. For variables used to explain waiting periods, we calculated the
covariates as weighted averages over the region preceding the sighting. This is consistent
with our model which assumes piecewise homogeneity in presence. In contrast, variables
related to sightability are used in a separate analysis here (and separately by Givens et al.
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(2009)) to estimate a detection function for sightings. For these covariates, averaging on
both sides of a sighting is sensible because a nearby region surrounding the sighting provides
better information about sighting conditions at the point of detection than does a region
containing points distantly preceding the sighting. Covariate averaging for sightability co-
variates is not required. However it takes advantage of much more available information,
dilutes the effect of data errors, and allows substitution for missing values. If averaging of
extra available covariates is to be used, our approach is more consistent with the standard
situation when the covariates are only observed at the sighting location. Specifically, the
detection function expresses the conditional probability of sighting an object given that the
object is at a certain distance from the plane and given the covariate values at that sighting.
The covariates that pertain are those that modify this relationship between distance and
detection.

This discussion of waiting period homogeneity and sighting-specific density estimates
raises a second concern. Consider a sighting following a very long preceding wait which is
then followed by several subsequent sightings with very short waits. This would occur when
there is a step function in relative density. Under the homogeneity assumption, the very long
wait yields a low density estimate at the point of the step, rather than, say, at the midpoint
of the long wait. Since the step occurs at a sighting, it is reasonable to view the sighting
as originating from the beginning of the high density region. Under this view, the density
estimate at such a step is biased downward because it is based completely on the preceding
wait and ignores the upcoming sightings. In this scenario the bias is real but it should be
put in context. Consider a bivariate scatterplot moving average smoothing problem. The
nature of the smoother is that it will be biased downward near local maxima and biased
upward near local minima (e.g., Givens and Hoeting, 2005). The same sort of effect will
be seen with a step function: the smoothed estimate will blur the transition, with upward
bias before the upward step and downward bias after it. Thus the concern about estimating
animal density from waits in a region of abrupt density change is nothing more than an
example of the same issue statisticians confront in many types of model-fitting. There is a
trade-off between bias and variance, with some bias being tolerated in order to fit a smooth
model to facilitate understanding of the underlying process that generated the data.

4.2 Related methods

A wide variety of other well-known methods are available for the analysis of spatial data.
For example, the approach of Baddeley and Turner (2005) is similar to our method to the
extent that it estimates the intensity parameter of an inhomogeneous Poisson process as a
log linear function of covariates. In that implementation, however, the covariates must have
a fixed spatial reference. The BWASP data include variables like year, however. The year
may, in principle, be observed multiple times at the same spatial point with differing values.
This is not compatible with their approach. One workaround would be to fit separate models
for each year. This would reduce sample sizes by about 96% on average and eliminate any
smooth interannual trends. Furthermore, the day variable presents the same problem, as do
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variables relating to effort such as waiting distance, sightability, or whatever similar term
might be developed. On the other hand, the Baddeley and Turner (2005) approach has a
natural way to model clustering. This is appealing despite the fact that cluster size was
found to be unrelated to sighting probability and cluster presence in our analysis. Their
approach also enables the modeling of spatial stochastic dependence between points.

4.3 Conclusion

In conclusion, the BWASP data have presented a context for reconsideration of the spatial
line transect model of Hedley and Buckland (2004). Several necessary and useful revisions
and additions were identified for addressing issues like clustered observations and censored
waits which were rampant in the BWASP data. Accordingly, a generalization of the concep-
tual model and an adaptation of a GAM estimation strategy were developed. Two important
concerns about this approach are its sensitivity to deviations from a purely random effort
distribution and its reliance–in the simplified GAM approach–on the assumption of inter-
sighting piecewise homogeneity. Investigations showed that sensitivity to sampling biases
can be comparatively low in the middle regions of the data. Concern about piecewise homo-
geneity is reasonable but can be viewed in the context of a bias-variance trade-off. For the
BWASP data, the approach yielded very informative estimates of wide-scale spatio-temporal
patterns in bowhead migration. These estimates were consistent with scientific conventional
wisdom and hunters’ traditional knowledge, while providing new spatio-temporal detail. We
also illustrated how localized abundance variation could be investigated after controlling
for the large-scale migration patterns. As examples of smaller-scale pattern detection, we
found significant evidence of localized scarcity and localized ‘piling up’. Possible reasons for
such findings include anthropogenic impacts, variation in environmental conditions, whale
behavior, or other unknown factors.

REFERENCES

Angliss, R. P., Rugh, D. J., Withrow, D. E., and Hobbs, R. C. (1995). Evaluations of
photogrammetric length measurements of the western Arctic stock of bowhead whales
(balaena mysticetus). Report of the International Whaling Commission, 45:313–24.

Baddeley, A. and Turner, R. (2005). Spatstat: an R package for analyzing spatial point
patterns. J. Stat. Software, 12:1–42.

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and
Thomas, L. (2001). Introduction to Distance Sampling: Estimating Abundance of Biolog-
ical Populations. Oxford University Press, Oxford, UK.

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and
Thomas, L. (2004). Advanced Distance Sampling: Estimating Abundance of Biological
Populations. Oxford University Press, Oxford, UK.

29



Burnham, K. P. and Anderson, D. R. (1998). Model Selection and Inference: a Practical
Information-Theoretic Approach. Springer-Verlag, New York, NY.

George, J. C., Zeh, J., Suydam, R., and Clark, C. (1994). Abundance and population trend
(1978-2001) of the western Arctic bowhead whales surveyed near Barrow, Alaska. Marine
Mammal Science, 20:755–773.

Givens, G. H. and Hoeting, J. A. (2005). Computational Statistics. Wiley, New York.
Givens, G. H., Hoeting, J. A., and Beri, L. (2009). Factors that influence aerial line transect

detection of Bering-Chukchi-Beaufort Seas bowhead whales. J. of Cetacean Research and
Management. submitted.

Griffiths, W. B. and Buchanan, R. A. (1982). Characteristics of bowhead feeding areas.
Pages 347-455 in W.J. Richardson, ed., Behavior disturbance responses, feeding of bow-
head whales, Balaena mysticetus, in the eastern Beaufort Sea, 1980-81. Report by LGL
Ecological Research Associates for US Bureau of Land Management. NTIS No. PB86-
152170.

Hedley, S. L., Buckland, S. T., and Borchers, D. L. (2004). Spatial distance sampling models,
pages 48–70. Advanced distance sampling: estimating abundance of biological popu-
lations. Oxford University Press, Oxford UK. S. T. Buckland, D. R. Anderson, K. P.
Burnham, J. L. Laake, D. L. Borchers, and L. Thomas (Eds.).

Manly, B. F. J., Moulton, V. D., Elliot, R. E., Miller, G. W., and Richardson, W. J. (2007).
Analysis of covariance of fall migrations of bowhead whales in relation to human activities
and environmental factors, Alaskan Beaufort Sea: Phase I, 1996-1998. OCS Study 2005-
033; LGL Rep. TA2799-3. Rep. from LGL Ltd., King City, Ontario, and WEST Inc.,
Cheyenne, Wyoming, for US Minerals Management Service, Anchorage Alaska. 128pp.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman & Hall, New
York.

Monnett, C. and Treacy, S. D. (2005). Aerial surveys of endangered whales in the Beaufort
Sea, fall 2002-2004. OCS Study MMS 2005-037, Anchorage, Alaska, 153pp.

Moore, S. E. and Reeves, R. R. (1993). Distribution and Movement, chapter 9, pages 313–
386. Special Publication No. 2 of the Society for Marine Mammalogy. J.J. Burns, J.J.
Montague and C.J. Cowles (Eds).

Richardson, W. J. and (Eds), M. T. W. (2004). Monitoring of industrial sounds, seals, and
bowhead whales near BP’s Northstar oil development, Alaskan Beaufort Sea, 1999-2003.
LGL Report TA4002. Rep. from LGL Ltd. (King City, Ontario), Greeneridge Sciences
Inc. (Santa Barbara, CA) and WEST Inc. (Cheyenne, WY), for BP Explor. (Alaska) Inc.
Anchorage, AK.

Rugh, D., DeMaster, D., Rooney, A., Breiwick, J., Shelden, K., and Moore, S. (2003).
A review of bowhead whale (balaena mysticetus) stock identity. Journal of Cetacean
Research and Management, 5:267–279.

Satellite, N. and Information Service, N. G. D. C. (2008). Bathymetry.
http://www.ngdc.noaa.gov/mgg/bathymetry/relief.html.

Schick, R. S. and Urban, D. L. (2000). Spatial components of bowhead whale (Balaena
mysticetus) distribution in the Alaskan Beaufort. Sea. Can. J. Fish. Aq. Sci., 57:2193–

30



2200.
Thomas, L., Laake, J. L., Strindberg, S., Marques, F. F. C., Buckland, S. T., Borchers,

D. L., Anderson, D. R., Burnham, K. P., Hedley, S. L., Pollard, J. H., Bishop, J. R. B.,
and Marques, T. A. (2006). Distance 5.0. release 2. Research Unit for Wildlife Population
Assessment, University of St. Andrews, UK. http://www.ruwpa.st-and.ac.uk/distance/.

Treacy, S. D. (2002). Aerial surveys of endangered whales in the Beaufort Sea, fall 2001.
OCS Study MMS 88-0030, Anchorage, Alaska.

Treacy, S. D., Gleason, J. S., and Cowles, C. J. (2006). Offshore distances of bowhead whales
(balaena mysticetus) observed during fall in the Beaufort Sea, 1982-2000: an alternative
interpretation. Arctic, 59:83–90.
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