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Abstract

We compare the sensitivity of estimated effective strip half-width and
detection function with respect to choice of hazard probability function (Q).
The model is being fit under different erroneous assumptions about the
parametric form of Q. This is done in an “infinite sample size” situation,
where fitting the model by maximum likelihood amounts to minimizing
the Kullback Leibler distance between the assumed and true models. The
experiment is carried out in a setting which is relevant to minke whale
sighting surveys both in the Antarctic and in the Northeastern Atlantic.
It is found that the hazard probability model is fairly robust with respect
to the choice of parametric class for Q. The largest observed bias in the
resulting effective strip half-width is around 8%, while for most situations
there was almost no bias.

1 Introduction
The hazard probability models is used within the IWC to model independent
observer line transect data for minke whales [Okamura et al., 2003, Skaug et al.,
2004] The hazard probability function Q(x, y) is defined as the probability of
observing a cue that occurs at relative position (x, y), given that the observer is
not aware of the whale. Here x and y are perpendicular and forward distance,
respectively. The purpose of the present paper is to study how sensitive quanti-
ties such as the effective strip half-width and the perpendicular distance density
are to the choice of Q. For this purpose we perform a pairwise comparison of
four alternative parametric forms of Q, and for each comparison treat one Q as
being the truth, while the other being treated as an approximation (Q∗). Then
we tune the parameters of Q∗ such that the Kullback-Leibler distance between
the models is minimized.
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2 Hazard probability model for independent ob-
servers

Consider first a single observer with hazard probability function Q(x, y). The
two-dimensional detection function is given as

g(x, y) =
α

v
Q(x, y) exp

(
−α

v

ˆ ∞

y

Q (x, u) du

)
, (1)

while the one-dimensional detection function is given as

g(x) =
ˆ ∞

0

g(x, y)dy = 1− exp
(
−α

v

ˆ ∞

0

Q (x, y) dy

)
. (2)

The density of the initial observations, falling within the observation strip (0, ω),
is given as

f(x, y) =
g(x, y)

w
, 0 ≤ x ≤ ω, y ≥ 0, (3)

and the effective strip half width is given by

w =
ˆ ω

0

g(x)dx =
ˆ ω

0

[
1− exp

{
−α

v

ˆ ∞

0

Q (x, y) dy

}]
dx. (4)

Two independent observers A and B, with the same Q function, yield a
combined observer A ∪B with hazard probability function

QA∪B = QA + QB −QAQB = 2Q−Q2. (5)

To get expressions for g, f and w for the combined observer A ∪ B, i.e. A and
B working as a team, we can directly insert QA∪B above. Further, each animal
detected by the combined observer A∪B sets up an experiment with trinomial
outcome u ∈ {A,B,AB}. Conditionally on the position (x, y) the probability
distribution of u is

q(u|x, y) = {QA∪B(x, y)}−1

 QA(x, y){1−QB(x, y), u = A;
QB(x, y){1−QA(x, y)}, u = B;
QA(x, y)QB(x, y), u = AB.

. (6)

The KL distance between two models for (x, y, u), induced by two different
Q-choices Q(T ) (the true model) and Q(∗) (the approximating model), is given
as

KL =
∑

u

ˆ ∞

0

ˆ ω

0

log
fT (x, y, u)
f∗(x, y, u)

fT (x, y, u)dxdy

=
∑

u

ˆ ∞

0

ˆ ω

0

[
log

qT (u|x, y)
q∗(u|x, y)

+ log
fT (x, y)
f∗(x, y)

]
fT (x, y, u)dxdy (7)

=
ˆ ∞

0

ˆ ω

0

KL(u|x, y)fT (x, y)dxdy +
ˆ ∞

0

ˆ ω

0

log
fT (x, y)
f∗(x, y)

fT (x, y)dxdy,
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where
KL(u|x, y) =

∑
u=A,B,AB

log
qT (u|x, y)
q∗(u|x, y)

qT (u|x, y).

Here, we have exploited that f(x, y, u) = q(u|x, y)f(x, y). In the expression for
KL above, f denotes the density based on QA∪B .

3 Experimental setup
The four parametric classes for Q that we consider are shown in Table 1. Each Q
is in turn taken to be the true model (Q(T )), while we are treating the three oth-
ers as approximating models (Q(∗)). For a given Q(T ) the parameters of Q(∗)are
chosen such that the KL distance (7) is minimized. The practical interpretation
of this is to use maximum likelihood estimation under an erroneous model as-
sumption with an infinite amount of data (from the correct model). The data
being fitted to consists of two parts: 1) the initial position for the combined
observer A ∪ B, i.e. the position (x, y) where the whale was first detected (re-
gardless whether it was A, B, or both that actually made the detection), and 2)
the outcome u ∈ {A,B,AB} of the trinomial trial. Observations falling outside
a strip of width ω = 1km at each side of the transect line are discarded.

The parameter values used as the “true values” for each of the four Q func-
tions are given in the first column of Table 2. For Q1–Q3 these values are based
on Antarctic minke whale data [CP 3, Area 5 Okamura and Kitakado, 2009]
and for Q4 the parameter values are based on on Northeastern Atlantic minke
whale data [Skaug et al., 2004].

The numerical minimization of the KL distance, with respect to the param-
eters of Q(∗), is done in Matlab. All integrals occurring in (1)-(7) are being
evaluated using numerical integration in Matlab (precision 10−6), as well. In
the integration with respect to y, the value 3km was used as the upper limit.

The main interest parameter for animal abundance estimation is w. Often,
it is the single observer version of w, as opposed to wA∪B, that is being used in
the abundance calculation [e.g. Skaug et al., 2004]. So although, the parameters
estimated from independent observer data, we shall measure the goodness of
fit using single-observer versions of w, g(0), and perpendicular distance density
f(x) =

´∞
0

f(x, y)dy, respectively. As a diagnostic for the fit to the trinomial
trials we plot q(AB|x, y), i.e. the probability that both observers detect the
whale simultaneously.

4 Results and discussion
Table 2 shows parameter estimates for all pairwise comparisons of the four haz-
ard probability functions. The corresponding comparisons of the perpendicular
distance densities f(x) and ratios of effective strip half-widths wT /w∗ are given
in Figure 1. Figure 2 shows qT(AB|x, y)/q*(AB|x, y) as a function of (x, y).
It is clear from both plots that Q1 differs from the three other models, while
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Q2–Q4 yield models with very similar properties. The reason for this is proba-
bly that the Q1 is formulated in Cartesian coordinates (x, y), while Q2–Q4 are
formulated in polar coordinates (r, θ). In particular, Q2–Q4can all be written
on the separable form h1 {h2(r)h3(θ)}, where h1 is a decreasing function, and
h2 and h3 are increasing functions.

The most severe under-estimation of w is w1/w3 = wT /w∗ = 1.07 (Q1 is
truth, while Q3 is the approximating model). In this case fitted perpendicular
density is more spiked at x = 0 than the true density (Figure 1). However, it
is not this phenomenon per se that is causing the misfit, as is clear from the
panel w1/w3 = 0.99 in which the fitted density is also spiked. The case with
the largest over-estimation is w1/w4 = 0.93. It seems that the (x, y) based Q1
is better at approximating the three (r, θ) based models, than the other way
around (compare the first column with first row in Figure 1).

In general, the smaller the KL value is, the closer wT /w∗ is to one (Table 2).
This means that model selection based on a likelihood ratio test, or the AIC
criterion, will perform reasonable for the purpose of picking a model that yields
an unbiased estimate of w.

5 Conclusion
For the approximating effective strip half-width w the hazard probability model
is fairly robust with respect to choice of Q. For all 12 pairwise comparisons
considered here the fitted w is within 8% of the true value. Further, it is not
the value of f(0) per se that causes wT to differ from w∗ as it would be in
the classical line transect literature which assumes g(0) = 1. All of the hazards
function considered here have g(0) < 1, and then f(0) plays a less important
role.
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Model 1 Q1(x, y) = (1 + exp(σxxγx + σyyγy + τ))−1

Model 2 Q2(r, θ) = (1 + exp(σrr
γr + σθθ

γθ + τ))−1

Model 3 Q3(r, θ) = exp (−σrr
γr − σθθ

γθ − τ)
Model 4 Q4(r, θ) = µ l[−λr(r−ρr)]l[−λθ(θ−ρθ)]

l[λrρr]l[λθρθ] , l[x] = exp(x)
1+exp(x)

Table 1: Different hazard probability functions used in the study: Q2 and Q3

are from Okamura and Kitakado [2009] while Q4 are from Skaug et al. [2004].
Here, (r, θ) denotes polar coordinates, with r =

√
x2 + y2 is radial distance and

θ ∈ [0, π] is the angle relative to the forward direction. Parameter values are
given in Table 2.
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True model Approximation Approximation Approximation
model 1 model 2 model 3 model 4

σx 2.1815 σr 1.0655 σr 0.6166 λr 1.3617
σy 0.1661 σθ 2.9047 σθ 3.6404 λθ 1.1411
γx 1.0000 γr 1.1855 γr 1.5166 ρr 0.1401
γy 2.5100 γθ 0.2948 γθ 0.1585 ρθ -33.1107
τ 1.1840 τ -1.0861 τ -1.3228 µ 0.4452
w 0.3407 0.3426 0.3177 0.3672

g(0) 0.6328 0.9183 1.0000 0.6469
KL 0.0104 0.0146 0.0340

model 2 model 1 model 3 model 4
σr 1.4550 σx 1.2810 σr 1.1522 λr 1.4204
σθ 1.0811 σy 0.3021 σθ 0.9573 λθ 2.1382
γr 1.0000 γx 1.4409 γr 1.1136 ρr -0.5920
γθ 1.5360 γy 2.1100 γθ 1.5470 ρθ 0.5871
τ 0.2940 τ 1.5987 τ 0.7656 µ 0.4815
w 0.3384 0.3269 0.3374 0.3369

g(0) 0.5720 0.4592 0.5826 0.5912
KL 0.0294 0.0001 0.0001

model 3 model 1 model 2 model 4
σr 1.1096 σx 1.1949 σr 1.4725 λr 1.5215
σθ 0.9158 σy 0.3431 σθ 1.0573 λθ 2.4254
γr 1.1800 γx 1.6034 γr 1.0371 ρr -0.2786
γθ 1.6930 γy 2.0790 γθ 1.6839 ρθ 0.6960
τ 0.6460 τ 1.3550 τ 0.0824 µ 0.5638
w 0.3847 0.3899 0.3860 0.3838

g(0) 0.6359 0.5146 0.6240 0.6499
KL 0.0313 0.0001 4.6e-5

model 4 model 1 model 2 model 3
λr 5.0000 σx 2.1429 σr 2.2879 σr 1.7941
λθ 0.1000 σy 2.1663 σθ 0.0780 σθ 0.0051
ρr 0.6923 γx 2.0695 γr 1.7609 γr 2.0397
ρθ 92.7200 γy 1.7977 γθ -0.0091 γθ 0.7004
µ 0.3700 τ 0.4045 τ 0.2263 τ 0.8663
w 0.3125 0.3149 0.3152 0.3137

g(0) 0.4519 0.4569 0.4616 0.4679
KL 0.0017 0.0017 0.0025

Table 2: Parameter estimates of approximating models (columns 2-4) that min-
imize the KL distance to the true model (column 1).
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Figure 1: Comparison of perpendicular distance (km) densities for true (dashed
line) and approximating density (solid line). The corresponding ratios of effec-
tive strip half widths are also given.
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Figure 2: Ratio q(T )(AB|x, y)/q(∗)(AB|x, y) between true and approximating
probability of the initial observation being made by both platforms. The layout
of the plot corresponds to that in Figure 1.
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