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ABSTRACT 
Simulations are used to assess the implications of different levels of ageing bias on the 
performance of the statistical catch-at-age method of Punt and Polacheck (2008).  
Simulations based on deterministic data suggest that a 20% under-estimate of age which 
changes over time to zero will lead to estimated time-trajectories of carrying capacity 
which match those from actual applications of the statistical catch-at-age analysis method 
when carrying capacity is time-invariant. Allowing for observation error makes the 
results more variable. 
. 
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INTRODUCTION 
Polacheck and Punt (2008) applied some preliminary models to the age estimates for 360 
Southern Hemisphere minke whale earplugs by nine independent readers obtained during 
the 1983 IWC minke whale ageing workshop (IWC 1984). They found that systematic 
inconsistency (i.e. ageing bias) exists for at least some of the readers, that the extent of 
bias depends on the true age, and that there is also likely to be a substantial amount of 
“random” (non-systematic) error in the age estimates, even for experienced readers. 
Ageing error is known to impact of the outcomes from methods of stock assessment that 
rely on catch-at-age data, such as Virtual Population Analysis and statistical catch-at-age 
analysis (e.g. Reeves, 2003).  For example, random ageing error can result in “smearing” 
of cohorts while ageing bias can result in spurious estimated trends in abundance. 

The statistical catch-at-age analysis method of Punt and Polacheck (2008) can take 
account of ageing error (if it can be quantified). Punt and Polacheck showed results when 
ageing error is assumed to be random (with a CV of 20-30%) and when it is assumed to 
biased (based on applying the method of Punt et al. (2008) to some of the data from the 
1983 aging workshop). They found that the trends in recruitment and total (1+) 
population size (particularly for the P stock) were sensitive to assumptions regarding 
ageing error. Punt and Polacheck (2008) also conducted a simulation evaluation of the 
implications on estimation ability of ignoring ageing error when it is present, but the 
results were preliminary because only low levels of random ageing error, and no ageing 
bias,  was considered in the simulations. 

This paper explores the issue of the impact of ageing error further by extending the 
simulation study of Punt and Polacheck (2008) to attempt to detect the “effect size” at 
which spurious trends in abundance would occur, in particular that abundance would be 
estimated to be increasing when this is not actually the case. 
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METHODS 
The “effect size”, κ, is defined here as the extent of relative bias in estimates of age, i.e. 
the value of κ such that the expected age (ignoring the effects of truncation at zero age) 
of an animal of true age a is κa. Given an assumed level of random variation in age-
reading error about the expected age, the distribution of estimated ages for an animal of 
true age b is given by: 
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where σ  is a measure of ageing error (set to 0.1 for the simulations of this paper).  
The impact of different values for κ on the estimation performance of the statistical 

catch-at-age method of Appendix A is evaluated by (a) constructing an operating model 
that is identical to the population dynamics model underlying the statistical catch-at-age 
method, (b) parameterising it so that the “true” trajectory of total (1+) abundance is 
virtually constant, (c) using this model to generate data sets which mimic those available 
for Southern Hemisphere minke whales (i.e. same years with estimates of abundance, 
same survey CVs, and same effective sample sizes for age-at-length and length-frequency 
data), and (d) applying the statistical catch-at-age analysis method under the assumption 
that κ=1 to these data.   

For simplicity, the operating model assumes that age-specific natural mortality is the 
same for the I and P stocks, as is the value for the resilience parameter. Growth is, 
however, different between the I and P stocks and, consistent with the results of applying 
the statistical catch-at-age method to the data for Southern Hemisphere minke whales, 
growth varies inter-annually. To avoid confounding of results due to differences between 
the operating model and the estimation model, the estimation model also assumes that 
resilience and natural mortality-at-age are the same for the two stocks. Furthermore, the 
deviations about the mean growth curve, about the mean proportions within each area, 
about the stock-recruitment relationship, and about the mean selection patterns are all 
assumed to be zero in the operating model (to avoid the results being impacted by the 
penalties imposed on these quantities in the statistical catch-at-age analysis). These 
deviations are, however, estimated in the estimation model.  

The value of κ changes over time from a reference value in 1970 to 1 in 1986 (Fig. 
1a), reflecting the assumption that ageing error has changed over time and current ageing 
procedures are unbiased. Fig. 1b illustrates the implications of values for κ of 1, 0.75 and 
0.5 on the expected age composition for females in Area IV for 1972. 

Two sets of analyses are conducted. The first aims to evaluate the implications of 
different values for κ over a broad range. For simplicity these trials are deterministic. The 
second set of analyses allows for observation error, but only considers a single value for 
κ (the lowest value of which leads to obviously spurious trends in abundance).  

RESULTS AND DISCUSSION 
Deterministic analysis 
Figure 2 shows the estimates of natural mortality, total (1+) abundance, and changes over 
time in carrying capacity based on fits of the statistical catch-at-age analysis method 
when the plus-group in the operating model is 54 or 80 and ageing is unbiased. The 
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estimates based on the operating model are somewhat biased even through the data are 
deterministic. This occurs because of the interaction between the selection pattern (which 
is dome-shaped for some fleets) and the plus-group age.  

Decreasing κ  from 1 to 0.6 leads to ever-greater extents of bias in the estimates of the 
trends in abundance (Fig. 3). The estimation model spuriously estimates that carrying 
capacity increased from 1930 to 1960 and declined thereafter for κ < 1 (except when 
κ=0.6 when carrying capacity is estimated to have increased and then stabilized at a new 
higher level)  

Stochastic analyses 
The time-trajectories of abundance for the W stock indicate spurious increases in 
abundance between 1930 and 1950-70 when allowance is made for observation error. 
However, such spurious trends are not evident for the I stock and the pattern of results for 
the W stock in Fig. 4 does not match that in Fig. 3. Analyses (not shown) indicate that the 
reason for the difference lies in the survey estimates of abundance and the JARPA indices 
of relative abundance – when these are treated as being deterministic, the results of the 
stochastic simulations match those in Fig. 3.  
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APPENDIX A: THE STATISTICAL CATCH-AT-AGE ANALYSIS METHOD 

The population dynamics model 
Under the assumption that harvesting occurs instantaneously at the start of the year, the 
number of animals of sex g and age a at the start of year y, ,

g
y aN , is given by: 
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where yB  is the number of births at the start of year y (the sex-ratio at birth is 
assumed to be 50:50), 

,
g
y aC  is the catch of animals of sex g and age a during year y, calculated as the 

sum of the catch over all fleets, i.e.: 

,
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,
,

g f
y aC  is the catch of animals of sex g and age a by fleet f during year y (the 

analyses treat the fleets in each area in which a stock is assumed to be 
found as separate fleets, and assume that there are three fleets in each of 
these areas: Japan before 1987/88, Japan from 1987/88, and Soviet 
Union),  

g
aM  is the instantaneous rate of natural mortality on animals of sex g and age a 

(assumed to be time-invariant), and 
x is the plus-group (set equal to 54 for the analyses of this paper). 

The relationship between natural mortality and age is taken to be piecewise linear: 
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where 0M  is the rate of natural mortality for animals aged a1 and younger,  

1M  is the rate of natural mortality for animals aged between a2 and a3, and 

xM  is the rate of natural mortality for animals aged a4 and older. 
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Births 
The number of births during year y depends on the number of females that have reached 
the age-at-first-parturition at the start of year y and the extent of density-dependence in 
pregnancy rate and infant survival1, i.e.: 

1 1 2(1 / ) / 2F
0

y y y RA B K
y yB B f e eε σ+ +− −=     (App.4) 

where F
yB  is the number of females that have reached the age-at-first-parturition at 

the start of year y, i.e.: 

F
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1
yB +  is the number of animals aged 1 and older at the start of year y: 
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1
yK +  is the carrying capacity (expressed in terms of the size of the 1+ 

component of the population) at the start of year y, 
,y aβ  is the proportion during year y of animals of age a that have reached the 

age-at-first-parturition, 
0f  is the pregnancy rate / infant survival rate in absence of harvesting, 

A  is the resilience parameter (assumed to be independent of stock), 
yε  is the logarithm of the ratio of the expected to actual number of births for 

year y, and 
Rσ  is the standard deviation of yε . 

Allowance is made for the possibility that carrying capacity has changed in a piecewise 
linear manner over the period considered in the analyses: 
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1 As calves are not harvested, this formulation for density-dependence conceptually encompasses density- 

dependent effects in the survival rate of calves. 



 6

where 1
1930K +  is the carrying capacity from 1930 to year y1, 

1
IK +  is ratio of the carrying capacity in year y2 to that in year y1, and 
1
2002K +  is ratio of the carrying capacity from year y3 to that in year y1. 

Catches 
The model-estimate of the catch of animals of sex g and age a by fleet f during year y 
depends on the number of animals of sex g and age a, the exploitation rate by fleet f on 
animals of sex s during year y, and the relative vulnerability (the combined effects of 
harvest selectivity and availability) of animals of sex g and age a during year y to fleet f. 

,
,

g f
y aC  is computed using the formula: 
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, , ,
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l
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where ,
, ,

g f
y a lC  is the catch during year y by fleet f of animals of sex g and age a that are 

in length-class l: 
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,
,

g f
y lS  is the vulnerability of animals of sex g and length l to fleet f during year y,  

,
,

g f
y aS  is the vulnerability of animals of sex g and age a to fleet f during year y,  

aS  is a factor to reduce the availability of animals of certain (younger) ages to 
the fishery, 

,g f
yF  is the exploitation rate due to fleet f on fully-selected (i.e. ,

, 1g f
y lS → ; 

,
, 1g f

y aS → ) animals of sex g during year y,  and 

, ,
g
y a lX  is the proportion of animals of sex g and age a that are in length-class l 

during year y. 

Vulnerability 
Vulnerability is either assumed to be a function of length, fleet and sex, or a function of 
age, fleet and sex. Recall that separate fleets are defined for each area in which each stock 
is assumed to be found. Thus, separate vulnerability curves are estimated for each area 
and operational type. Note, however, that for the JARPA catches it is assumed that the 
vulnerability function is the same in all areas for each stock. This is because there are 
insufficient data to support the estimation of area-specific vulnerability curves for 
JARPA. The model has options which allow vulnerability to be uniform (Equations 
App.10a and App.11a), logistic (Equations App.10b and App.11b), or domed-shaped 
(Equations 10c and 11b), and can vary over time:  

,
, 1g f

y lS =        (App.10a) 
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where ,
50,
g f

yL  is the length-at-50%-vulnerability (logistic vulnerability) / length-at-full-
vulnerability (dome-shaped vulnerability) for fleet f fishing during year y 
for animals of sex g: 
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 ,
50,
g f

ya  is the age-at-50%-vulnerability (logistic vulnerability) / age-at-full-
vulnerability (dome-shaped vulnerability) for fleet f fishing during year y 
for animals of sex g: 

, , ,
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,g f
yδ  is the “vulnerability deviation” during year y for fleet f fishing for animals 

of sex g, 
,

diff
g fL  is the width of the length-specific vulnerability ogive for fleet f fishing for 

animals of sex g,  
,

diff
g fa  is the width of the age-specific vulnerability ogive for fleet f fishing for 

animals of sex g,  
,

left
g fL  and ,

right
g fL  are the parameters that determine the extent of dome-shapedness 

for the length-specific vulnerability ogive for fleet f fishing for animals of 
sex g, 

,
left
g fa  and ,

right
g fa  are the parameters that determine the extent of dome-shapedness 

for the age-specific vulnerability ogive for fleet f fishing for animals of sex 
g, and 

lL  is the length (in ft) corresponding to the mid-point of length-class l. 

Time-dependence in vulnerability is modelled by allowing the length- (or age-)at-50%-
/full-vulnerability to change from one year to the next, i.e. the shape of the vulnerability 
ogive is the same each year, but the point at which vulnerability first equals 1 changes. 
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Time-dependence in vulnerability was modelled in this way to avoid the over-
parameterization that might occur if allowance was also made for time-dependence in the 
parameters that determine the shape of the vulnerability ogive.  Note that vulnerability is 
assumed to be time invariant for the JARPA catches. 

Growth 
The proportion of animals of sex g in age-class a that are in length-class l during y, 

, ,
g
y a lX , is given by: 
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where  LΔ  is half of the width of each length-class (0.5 ft), 
g
γσ  is the extent of variability about the growth curve for sex g,  

,
g
y aL  is the expected length of an animal of sex g and age a during year y, 

assuming that length-at-age is governed by a von Bertalanffy growth curve 
and that the growth rate parameter g

yk  varies for every year from 1963/64 
until 2004/05, i.e.: 
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gL∞  is the asymptotic length for animals of sex g, 
g
yk  is the value of the Brody growth coefficient for animals of sex g during 

year y: 

1
yg g

y yk k eυ−=     (App.15) 

0
gt  is the theoretical age at which length is zero for animals of sex g, and  

yυ  is the extent to which the growth rate changes from year y-1 to year y. 

Initial conditions 
The initial conditions (y1=1930) correspond to a population at its unexploited equilibrium 
level, i.e.: 
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where 0B  is the expected number of calves in the absence of exploitation. 

The value of the parameter 0f  is chosen so that the population remains in balance in the 
absence of exploitation, i.e.: 
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The objective function 
The objective function contains contributions from the data and from penalties on some 
of the parameters, i.e.: 

ni i j
i j

L O L P= +∑ ∑     (App.18) 

where n iL  is the contribution of the ith data source to the objective function, 

jP  is the contribution of the jth penalty term to the objective function, and 

iO  is a factor to account for overdispersion.  

The data included in the analyses are the annual catches (by fleet and sex), the estimates 
of abundance (IDCR and JARPA), the catch length-frequency data and the age-length 
keys, while there are penalties on the magnitudes of the deviations from the expected 
number of births (Equation App.4), on the inter-annual deviations in the growth rate 
(Equation App.15), on the inter-annual variation in the proportion of the population in 
each area (see Equation App.23), and on the inter-annual deviations in vulnerability 
(Equation App.12). Each of these contributions is discussed in turn below. The equations 
listed below assume that data for each data-type are available for every year, and for all 
Areas and fleets. This is not the case in reality and the equations are modified 
appropriately in the absence of data for specific years, areas and fleets. 

Catches 
The contribution of the catches to the objective function is based on the assumption that 
any errors when measuring the catch are log-normally distributed2, i.e.: 

2
, , 21

1 2
n n ( n n )

C

g f g f
C y y

y g f y
L C C Const

σ
σ

⎧ ⎫
= + − +⎨ ⎬

⎩ ⎭
∑∑∑ ∑  (App.19) 

where ,g f
yC  is the actual catch by fleet f of animals of sex g during year y (see Table 

1), and 
Cσ  quantifies the extent of variation in catches. 

                                                 
2 Note that very high weight is assigned to this component of the objective function so the model 

effectively replicates the actual catches exactly. 
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Estimates of abundance 
The estimates of abundance are assumed to be indices of 1+ abundance, i.e.: 

{ }2
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2 2( )
n n ( n n( ))A

y

A A A A
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where A
yV  is the estimate of abundance for Area A and year y, 
Aχ  is the bias factor for Area A, 
A
yσ  is the measurement error standard deviation, determined from the 

observation error standard deviation and the extent of additional variance, 
i.e.: 

2 2 2( ) ( )A A
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2τ  is the extent of additional variance,  
A
yφ  is the coefficient of variation of A

yV , 
Surv,A
yB  is the model-estimate of the total (1+) abundance in Area A at the start of 

year y, i.e.: 
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A
yP  is the proportion of the population that is in the region A during year y: 
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*f  is the fleet to which the abundance estimates pertain (set to the post-1987 
Japanese fleet for the JARPA indices; set to uniform selectivity for the 
IDCR indices),   

AP  is the expected proportion of the population that is in the Ath region, and  
A
yϕ  is the deviation from the expected proportion in Area A for year y. 

Length-frequency data 
The contribution of the length-frequency data to the objective function is based on the 
assumption that the catch by sex is taken multinomially from the vulnerable population, 
i.e.: 
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where ,g f
yM  is the effective sample size for the length-frequency data for animals of 

sex g taken by fleet f during year y (set equal to the number of animals of 
sex g taken by fleet f during year y for which information on length is 
available), 

,
,

g f
y lρ  is the observed fraction of the catch of animals of sex g taken by fleet f 

during year y that is in length-class l,  
,
,ˆ g f

y lρ  is the model-estimate of the fraction of the catch of animals of sex g taken 
by fleet f during year y that is in length-class l: 
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Lengths min, yl  and max, yl  define the plus and minus groups for the length-frequency data 
for year y (data and model-predictions for animals with length less than min, yl  are pooled 
in the min, yl  length-class while data and model-predictions for animals with length greater 
than max, yl  are pooled in the max, yl  length-class). 

Age-length keys 
The age-length keys are included in the objective function under the assumption that 
sampling for age is multinomial conditioned on length, i.e. 
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where ,
,

g f
y lM  is the effective sample size for the age breakup of the animals of sex g in 

length-class l taken by fleet f during year y  (set equal to the number of 
animals of sex g in length-class l taken by fleet f during year y for which 
information on length and age is available), 

,
, ,

g f
y a lθ  is the observed fraction of the catch of animals in length-class l of sex g 

taken by fleet f during year y that were aged to be age a, 
,
, ,

ˆg f
y a lθ  is the model-estimate of the fraction of the catch of animals in length-class 

l of sex g taken by fleet f during year y that were aged to be age a, i.e.: 

,
, ,,

, , ,
, ',

'

ˆ
g f
y a lg f

y a l g f
y a l

a

C
C

θ =
∑

     (App.27) 

,
, ,

g f
y a lC  is the model-estimate of the number of animals of sex g caught by fleet f 

during year y that would have been aged to be age a: 
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, ,
, , , ' , ',

'

g f g g f
y a l a a y a l

a
C Y C=∑     (App.28) 

, '
g

a aY  is the fraction of animals of sex g and age a’ that are aged to be age a (the 
age-reading error matrix), i.e. assuming that the coefficient of variation of 
the age-reading error is independent of age: 

2( )
" 22( )'

0.5

, ' "
0.5 '

1
2

a

a

a
g

a a
a a

Y e d
λ β

σ λ
πσ

−+ −

−

= ∫     (App.29) 

aβ  is the expected age based on age-readings for an animal of true age a, 
"
aσ  is the standard error of the  age-estimate for an animal of true age a 

(generally "
a aσ α= ) , and 

α  is the coefficient of variation of the age-reading error. 

Ages min, ya  and max, ya  define the plus and minus groups for the ageing data for year y, i.e. 
data and model-predictions for animals with age greater than max, ya  are pooled at age 

max, ya 3 and those with age less than min, ya  are pooled at age min, ya . 

Penalties  
The penalty on the deviations from the expected number of births is based on the 
assumption that these deviations are log-normally distributed, i.e.: 

2
21

1 2
( )

R
y

y
P

σ
ε= ∑      (App.30) 

The penalty on the changes over time in the vulnerability deviations is based on the 
assumption that these deviations are normally distributed, i.e.: 

2
, 21

2 2
( )

S

g f
y

g y f
P

σ
δ= ∑∑∑     (App.31) 

where Sσ  is the extent of inter-annual variation in the age-at-50%-vulnerability. 

The penalty on the annual deviations in the proportion of each stock in each area is based 
on the assumption that these deviations are normally distributed, i.e.: 

2
21

3 2
( )

P

A
y

y A
P

σ
ϕ= ∑∑      (App.32) 

where Pσ  is the extent  of variation in the distribution of the stock. 

                                                 
3 Note that the evaluation of the impact of age-reading error is determined before the application of the 

plus-group. 
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The penalty on the inter-annual changes in the von Bertalanffy growth rate parameter is 
based on the assumption that these deviations are normally distributed, i.e.: 

2
21

4 2 k
y

y

P
σ

υ= ∑       (App.33) 
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Fig. 1. Time-trajectory for the parameter that determines the extent of ageing bias (a), and 
three true age compositions for females in Area IV for 1972 (b). Results are shown in (b) 
for (i) κ=1, (ii) κ=0.75, and (iii) κ=0.5.  
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Fig. 2. Results from fitting the statistical catch-at-age estimator to data sets generated 
from an operating model in which the true plus group age in 54 (solid line) and in which 
it is 80 (dashed lines). The bold dash-dot line indicates the true (operating model) values. 
The operating model on which this plot is based assumed that κ=1 (no ageing bias). 
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Fig. 3. Results from fitting the statistical catch-at-age estimator to data sets generated 
from an operating model in which the value of κ is varied from 1 to 0.6. The bold dash-
dot line indicates the true (operating model) values.  
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Fig. 4.  Results from fitting the statistical catch-at-age estimator to data sets generated 
from an operating model in κ=0.8 and the data are generated stochastically. The bold 
dash-dot line indicates the true (operating model) values. 


