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Abstract

We propose a new method, based on the Markov modulated Poisson process, for fitting
a spatial Neyman-Scott process to line transect data. The method is applied to sighting
survey data for Northeastern Atlantic minke whales for the period 2002-2007. Variation
in effective strip half-width along the transect line is accounted for. We obtain parameter
estimates for the Neyman-Scott process by survey block.

Keywords: Clustering, Line transect surveys, Markov modulated Poisson process, Minke
whales.

1 Introduction
The estimation approach used for Northeastern Atlantic minke whales uses a Neyman-Scott
process to represent the spatial distribution of whales (Hagen & Schweder 1994, Aldrin et al.
2002, Skaug et al. 2004). Here we present a new method for estimating the parameters of the
Neyman-Scott process, and apply it to sighting survey data from the period 2002-2007 (Bøthun
et al. 2009).

The spatial positions of individuals in a population may be viewed as the ’points’ in stochas-
tic point process. Assume that a line transect survey (Buckland et al. 2001) has been conducted,
possibly for the purpose of estimating animal abundance. We can ’project’ each detected an-
imal onto the transect line, by marking the position of the observer at each time an animal
is detected (Schweder 1977). This generates a one-dimensional point process on the transect
line (the encounter process). Figure 1 shows the projections for a multi year sighting survey
for minke whales conducted in the Northeastern Atlantic during the period 2002-2007. The
aim of the present paper is to estimate the parameters in the underlying two-dimensional point
process from the line transect data.

An important characterization of the spatial point process is the degree of clustering mea-
sured relative to a Poisson process. Large scale variation in animal density along the transect
line may be explained in terms of geographical covariates as in Hedley & Buckland (2004), but
clustering on a smaller scale is most conveniently treated as a stochastic phenomenon. Small-
scale clustering may be of biological interest, and affect the precision of line transect estimators
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of abundance. The presence of small-scale clustering in the minke whale surveys is apparent
in Figure 1. Consider as an example the survey block GA in which we can say that there are
between 5 and 10 clusters, depending on how we count. Under the model to be fit later the
expected number of clusters is eight.

A two-dimensional Neyman-Scott (NS) process with Poisson cluster size has been used
to model whale populations (Hagen & Schweder 1994, Schweder et al. 1999, Cowling 1998,
Skaug et al. 2004, Waagepetersen & Schweder 2006). Most of these authors have estimated
the parameters of the NS process by minimizing the distance between theoretical and empirical
versions of Ripley’s K function for the one dimensional point process. This is in effect a moment
estimator, and the approach does not have the benefits of likelihood methods, such as model
selection via the AIC criterion. Waagepetersen & Schweder (2006) used a MCMC algorithm to
evaluate the likelihood function, but the method was computationally intensive.

We present a two-dimensional Cox process with two levels of animal density: ρ1 (back-
ground) and ρ2 (high density regions). The high density regions are assumed to be disk-shaped
with a stochastic radius R, and disks-centers located according to a homogeneous Poisson pro-
cess. We choose the distribution of R such that the ’projection process’ (onto the transect line)
has properties similar to a Markov modulated Poisson process (MMPP). The likelihood func-
tion for the MMPP is readily available (Skaug 2006), and hence maximum likelihood estimation
for the proposed Cox process is computationally feasible.

The goal of the paper is to present the cluster process, to investigate its properties and make
comparison to the NS process. The rest of the paper is organized as follows: Section 2 reviews
the MMPP and introduces the moment matching criteria. Section 3 applies the methodology
to real data.

2 Theory
We start out by reviewing the MMPP in the context of line transect surveys.

2.1 The Markov modulated Poisson processes

The MMPP is a generalization of the ordinary homogeneous one-dimensional Poisson process,
in that it allows the encounter rate (number of animals detected per unit distance) to attain two
levels: λ1 (low) and λ2 (high). Which of these levels is attained at a given point is determined
by a latent continuous time Markov process with switching intensities µ1 (λ1 → λ2 transition)
and µ2 (λ2 → λ1 transition). The λ’s are related to the underlying (spatial) animal density ρ
through λi = 2wρi (i = 1, 2), where w is the effective strip half-width. The framework allows
w to vary along the trackline as a function of covariates related to sighting conditions etc. The
parameter vector to be estimated is θ = (ρ1, ρ2, µ1, µ2), while w is treated as an exogenous
variable, i.e. it is assumed to have been estimated using ordinary line transect methods.

Consider a transect leg of length L, and let y1, . . . , yn be the points in the interval [0, L] at
which animals are detected. Skaug (2006) gives an expression for the MMPP likelihood based
on these data. The log-likelihood, summarized over contributions from different transect legs,
is maximized w.r.t. θ using AD Model Builder (Fournier 2001). We allow all four parameters to
vary across survey block, using a parametrization which in case of ρ1 reads ρ1,b = ρ1 exp(δρ1,b),
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where
∑

b δρ1,b = 0. In effect, we fit a separate MMPP to each survey block. For identificability
reasons discussed below, we impose a weak prior (mean-zero and variance 10) on all the δ’s,
also those for ρ2, µ1 and µ1.

The stationary distribution, which applies to the beginning of each new survey leg, is given
by

Pr (λ1) =
µ2

µ2 + µ1

and Pr (λ2) =
µ1

µ2 + µ1

. (1)

The overall overall animal density is

D =
µ2ρ1 + µ1ρ2

µ2 + µ1

. (2)

We note that the Poisson process can be obtained as a limit for the MMPP in different ways: 1)
λ1 → λ2, 2) {µ1 → 0} or {µ2 →∞} which means that the encounter rate is λ1 all of the time,
or 3) {µ2 → 0} or {µ1 → ∞} fixing the encounter rate at λ2. To make the model identifiable
in the case that data truly comes from a Poisson process we impose a weak prior on all the δ’s,
as mentioned above.

2.2 The MMPP-2

Imagine a two dimensional cluster process with disk-shaped high density areas (see Figure 2).
Given the location and size of disks, points are distributed according to an inhomogeneous
Poisson process with density ρ2 inside disks, and density ρ1 outside. The radius R of a given disk
is assumed to be random with density h(r). Assuming that the transect line is placed randomly
in the plane, the conditional distribution of R for a disk that happens to be intersected by the
transect line is h∗(r) ∝ r · h(r). Cluster centers are randomly distributed with low density so
that overlapping disks do not become a problem. We shall refer to this process as the MMPP-2,
although ’MMPP’ strictly speaking is a misnomer.

Consider a disk that is intersected by the transect line, and denote by V the length of the
cord inside the disk (Figure 2). It may be shown that V = 2R

√
1− U2, where U is uniformly

distributed on (0, 1). Because we want to match the MMPP-2 with the one-dimensional MMPP
we make the assumption that V is exponentially distributed with rate µ2. Through the rela-
tionship R = V

(
2
√

1− U2
)−1

this assumption induces a distribution on R. However, it may
shown that the resulting density satisfies limr→0 h∗(r) > 0, and hence h(r) ∝ r−1 ·h∗(r) is not a
proper density. The solution chosen here is to instead assume that V has a gamma distribution
with rate µ2 and shape 1 + ε. By choosing ε > 0 small we get a good approximation of the
exponential distribution, while ensuring that h(r) is proper.

We define a cluster as a high density region containing at least one animal. This requirement
alters the probability density of R relative to the population of all disks: h†(r) ∝ h(r)(1 −
exp(−2πρ2r

2). For small r we have h†(r) ∝ r2h(r) which makes it clear that we are selecting
against small disks. Further, since h†(r) ∝ r2h(r) ∝ rh∗(r) we see that h†(r) is a proper density
even in the situation where V is exponential. Figure 3a) shows h†(r) when µ2 = 0.079 km−1,
which is representative for the minke whale data.

2.3 Neyman-Scott process

The two-dimensional NS cluster process is defined as follows:
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• Cluster centers constitute a spatial Poisson process with intensity with γNS.

• The cluster size M , i.e. the number animals within a cluster, is Poisson distributed with
mean µNS.

• The position of points relative to the cluster center are drawn independently from an
isotropic binormal distribution with standard deviation ρNS.

For a given parameter setting (ρ1, ρ2, µ1, µ2) of the MMPP we choose the parameters of the
NS process so that the processes matches each other as closely as possible. Three moment
conditions are needed in order to determine γNS, µNS and ρNS. There are many ways of choosing
these, and we here select three conditions with a simple interpretation:

• Expected distance to cluster center. In the MMPP-2 consider a (non-empty) cluster
with disk radius R drawn from h†(r). Select one cluster member at random and denote
by S the distance to the center of the disk. The expectation of S is given as

EMMPP (S) =
∫ ∞

0
f(s|R = r)h†(r)dr, (3)

where f(s|R = r) = 2sr−2 is the conditional density of S. The corresponding expectation
under the NS process is obtained by noting that (S/ρNS)2 has a chi-square distribution
with two degrees of freedom, implying that E(S) = ρNS

√
π/2. By matching E(S) for the

two processes we

ρNS =
EMMPP (S)√

π/2
. (4)

• Expected cluster size. Conditionally on R = r we have that M has a Poisson distri-
bution with mean 2πr2ρ2 under the MMPP-2, and hence

EMMPP (M) =
∫ ∞

0
2πr2ρ2h

†(r)dr. (5)

Under the NS process M by definition, but because we are only considering non-empty
clusters we must use a zero-truncated Poisson distribution with expectation µNS/[1 −
exp(−µNS). Matching this expression with EMMPP (M) and solving (numerically) yields
a value for µNS.

• Overall density. The overall animal density should match, implying

γNS =
D

µNS
, (6)

where D is given by (2). This follows from the fact that the overall density under the NS
process is γNSµNS.

It is not easy to obtain closed form expressions for EMMPP (S) and EMMPP (M). Appendix A
describes a simulation procedure for evaluating these quantities numerically.

Figure 3a) compares the distribution of R under the two processes for ˙ρNS determined using
the above criterion. The distribution of S is much more heavy tailed under the MMPP. Figure
3b) shows a similar comparisons for M , and it is seen that M is very overdispersed under
MMPP-2.
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3 Application to Northeastern minke whale surveys
Shipboard sighting surveys have been conducted in the eastern North Atlantic since 1987 with
the purpose of estimating minke whale abundance. In order to obtain regions with relative
homogeneous whale density the total survey area has been divided into distinct survey block
(Figure 1). For the present analysis blocks with low survey effort was been merged (see caption
of Figure 1), yielding a total of 18 survey blocks. Whale abundance has traditionally been
calculated by survey block, and a total estimate is obtained by adding together block specific
estimates (Skaug et al. 2004). The total survey area is too large to be covered within a single
year. Instead a sequence of yearly surveys with partial coverage (approximately 1/6) has been
used. In the present analysis we use data from the period 2002-2007. The multiyear aspect
is not very important for the present analysis, but explains why some survey block (NC1 and
NOS) have been covered twice.

Survey blocks, tracklines and spatial location of sightings are shown in Figure 1. Two survey
vessels, both with two independent observer platforms (A and B), participated in the survey
each year. Both platforms had two individual observers, but we shall treat these as a single
entity (the ‘platform’). There were totally 354 periods of continuous survey effort (transect
legs). Breaks in survey effort of duration less than 30 minutes were ignored, i.e. the two
adjacent legs were joined under the assumption that the survey vessel had not moved during
the break. Table 1 summarizes transect lengths and the number of observations by survey
block. Details about the data collection protocol may be found in Skaug et al. (2004).

Estimates of the effective strip half-width (w) as a function of covariates are taken from
Bøthun et al. (2009). Because the covariates vary along the transect line, with values being
recorded every hour, w is a piecewise constant function of time. We recall that encounter rate
is related to whale density through λi = 2wρi (i = 1, 2).

Data are analysed separately by platform, and jointly (A+B) by multiplying the likelihoods
of the two datasets. The latter may be viewed as pseudo-likelihood method, because the two
data sets are not independent, since the platforms have been exposed to the same animals. A
full likelihood approach would require duplicate identification, i.e. to determine which animals
were detected by both platforms, and then fitting the MMPP to the merged dataset. However,
duplicate identification is not an error free process (Bøthun et al. 2009), and by using the
pseudo-likelihood approach we avoid problems arising from erroneous duplicate identification.
A disadvantage of the pseudo-likelihood is that empirical Fisher information may not be used
to calculate parameter uncertainty.

3.1 Results

Table 2 shows parameter estimates when a separate MMPP is fit to each survey block. There
is a large variation in parameter values across survey blocks, as measured by the ratio of the
largest to the smallest value. This variation is partly due to real biological variation, but is
also caused by statistical uncertainty, as many survey blocks have few observations (Table 1).
Generally, the µ parameters vary more than the ρ parameters, and variation is less for the joint
dataset (A+B), where statistical uncertainty is reduced.

Table 4 performs model selection via the AIC criterion to see if both µ = (µ1, µ2) and
ρ = (ρ1, ρ2) need to be block specific. The AIC criterion weights the likelihood value against
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the number of parameters in the model. Since there are 18 survey blocks, there are 17 free
parameters associated with each of µ1 and µ2, and hence 34 free parameters in total for a block
effect in µ. Similarly, there are 34 parameters associated with a block effect in ρ. The table also
compares AIC values with and without variation in w along the transect line. The number of
parameters used in AIC for the two options regarding w is the same, because w has the status
as an ’offset’ in the model. It is seen that the lowest AIC values (and hence the best fit) is
obtained for the model where µ is constant across survey block. This holds for both platform
A and B.

For platform A the model with a varying w has a better fit than the one with a constant w.
This is to be expected, as variation in strip width must affect the animal encounter rate.
Somewhat surprisingly, the same is not the case for platform B, where the model with constant
w has the best fit, except for the model where both of µ and ρ are constant across survey block.

Table 3 shows parameter estimates for the NS process obtained from inserting values from
Table 2 into (4)–(6).

4 Discussion
A method for fitting a two dimensional Neyman-Scott (NS) process to line transect data has
been suggested. The approach involves two intermediate models (one- and two dimentional
MMPPs), and may thus seem ad-hoc compared to the full likelihood approach of Waagepetersen
& Schweder (2006). The advantage of our method is computational simplicity. It takes less one
than 2 minutes on a standard work station to fit all the models in Table 4. The availability
of a likelihood function provides a recipe for how to estimate covariate effects and account for
variation in effective strip half-width under the MMPP. In addition, end-effect’s, i.e. how to
handle right-truncation resulting when the effort is shut down due to bad weather conditions,
are easily handled under the MMPP (Skaug 2006).

A way of inferring two-dimensional cluster structure from line transect data have been
introduced. The main mathematical contribution is the formulae (4)-(6). It may seem that
the road taken is unnecessarily long, going via the MMPP and the ’two dimensional MMPP’.
However, the fact that a likelihood function is available under the MMPP makes the fitting
of the model is much simpler than the L-function based approach in Aldrin et al. (2002).
Accounting for covariates, such as a survey block effect, follows a standard recipe under a
likelihood framework.
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A Sampling algorithm
The following algorithm is used to sample evaluate the expectations (3) and (3). Each step
below is repeated N = 10, 000 times. This is not made explicit in our notation except when
necessary.

1. Draw V ∼ gamma(shape = 1.01, rate = µ2).

2. Draw U ∼ uniform(0, 1) and calculate R∗ = V/
(
2
√

1− U2
)
, so that R∗ ∼ h∗(r).

3. Sample R from R∗
1, . . . , R

∗
N with probability proportional to 1/R∗

i , so that R ∼ h(r).
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4. Given R, draw M from a Poisson distribution with mean 2πR2ρ2.

5. If ˙M = 0 remove the corresponding R from the sample. The number of ’survivors’ R†

satisfies R† ∼ h†(r). This step reduces the sample size.

6. Given R†, define S = R†
√

U , where U ∼ uniform(0, 1) (not the same variable as in step
2).

When evaluating (3) we take EMMPP (S) to be a trimmed mean (5% on both sides) of the S
values sampled in step 6 above. Similarly, when evaluating (4) we take EMMPP (M) to be a
trimmed mean of the non-zero M ’s in step 4.
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A B A+B
L n D τ n D τ n D τ

BAW 03 847 14 0.037 3.4 11 0.035 3.4 25 0.036 3.4
BAE 07 2055 31 0.032 5.1 25 0.035 12.3 56 0.03 4.4
BJ 03 1235 45 0.061 5.4 34 0.067 11.8 79 0.065 7.6
FI 02 1992 26 0.026 4.8 29 0.036 5.8 55 0.031 5.8

NOS 06 2045 29 0.029 3.7 24 0.027 8.6 53 0.027 5.2
KO 07 926 21 0.051 2.3 18 0.055 2.1 39 0.053 2.1
GA 07 1331 36 0.062 8.7 28 0.057 7.7 64 0.06 8.2
JMC 05 621 35 0.129 6.5 32 0.137 1.5 67 0.134 3.5
LOC 06 1378 26 0.027 5.7 21 0.027 8.5 47 0.027 7.6
NC1 04 1290 8 0.016 2 5 0.013 1.3 13 0.014 1.8
NC1 06 842 13 0.033 1.5 6 0.018 1.4 19 0.026 1.5
NC2 04 357 10 0.032 5.2 6 0.028 4.6 16 0.031 4.8
NON 03 756 12 0.038 1.5 10 0.038 2.1 22 0.038 1.7
NOS 02 4273 71 0.04 4.2 60 0.038 5.4 131 0.039 4.4
NS 04 2115 9 0.007 1.8 7 0.007 1.3 16 0.007 1.6

NVN 05 1705 26 0.025 11.9 21 0.031 5.6 47 0.027 7.2
NVS 05 1788 6 0.006 1.9 7 0.01 2 13 0.008 2.2
SV 03 1614 31 0.045 10.9 32 0.048 7.3 63 0.046 9.1
Total 27170 449 376 825

Table 1: Estimated whale density D (km−2) under the MMPP by survey block and platform.
Also shown is transect length L (km), and the number of observations n. Platform A+B means
pooling data from A and B as explained in the main text.

Tables and figures
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A B A+B
ρ1 ρ2 µ1 µ2 ρ1 ρ2 µ1 µ2 ρ1 ρ2 µ1 µ2

BAW 03 1.11 43 1.1 15.92 1.37 53.3 0.7 16.11 1.24 47.2 0.9 16.35
BAE 07 0.12 12.1 1.1 3.12 1.99 158 0.1 12.11 1.69 66.9 0.4 18.78
BJ 03 1.21 24.5 1.8 6.67 4.05 666 0.2 57.95 3.84 160 0.4 25.52
FI 02 1.77 76.2 0.2 20.77 2.11 55.8 0.3 9.81 1.97 67.8 0.2 13.25

NOS 06 0.21 28 0.9 8.55 1.24 51 0.1 4.68 0.94 36.7 0.3 6.56
KO 07 3.6 105 0.9 62.75 0.96 42.4 3.4 27.28 2.93 76.2 1.6 48.54
GA 07 1.92 41.4 0.7 6 2.25 35.8 0.6 4.73 2.03 38 0.7 5.31
JMC 05 5.26 150 1.5 27.08 3.12 368 9.8 326.52 4.38 142 3.5 50.13
LOC 06 1.73 85 0.3 21.41 1.66 180 0.1 22.61 1.81 131 0.1 21.17
NC1 04 0.66 40.7 0.7 30.19 1.12 21.1 0.3 46.8 0.87 39.4 0.5 32.87
NC1 06 1.9 101 2.3 159.73 1.64 23.1 0.3 44.63 1.82 102 1.3 173.35
NC2 04 0.37 28.4 1.1 9.79 0.16 22.1 0.9 6.74 0.2 25.3 1.1 8.49
NON 03 3.64 16.9 0.4 30.39 0.58 20 2.5 12.48 3.46 22.4 0.5 24.93
NOS 02 1.02 32.7 0.9 8.51 1.91 42.4 0.3 6.74 1.38 35.9 0.6 8.09
NS 04 0.45 32 0.4 45.1 0.62 17.7 0.3 57.42 0.52 28.8 0.4 50.28

NVN 05 0.58 15.9 0.2 1.29 1.19 32 0.3 5.18 0.7 18.9 0.3 2.46
NVS 05 0.12 9.33 0.6 11.12 0.46 48.3 0.5 44.3 0.41 49.5 0.3 40.87
SV 03 1.8 43.4 0.3 4.39 2.26 49.3 0.4 6.48 2 45.7 0.3 5.17

max/min 43.8 16.1 11.5 123.8 25.3 37.6 98.0 69.8 21.9 8.5 35.0 70.5

Table 2: Parameter estimates (times a factor 100 for convenience) for the MMPP by survey
block and observer platform. The unit of ρ is km−2 and that of µ is km−1.
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A B A+B
γNS µNS ρNS γNS µNS ρNS γNS µNS ρNS

BAW 03 0.0028 13.3 0.9 0.0023 15.2 0.9 0.0026 13.9 0.9
BAE 07 0.00063 50.7 3 0.00076 46 0.8 0.0021 14.5 0.7
BJ 03 0.0021 29.2 1.7 0.0045 14.9 0.2 0.0038 16.9 0.5
FI 02 0.0019 13.5 0.7 0.0012 30 1.1 0.0014 22.4 0.9

NOS 06 0.0013 22.8 1.4 0.00034 79.7 1.8 0.00069 39.1 1.6
KO 07 0.011 4.7 0.4 0.008 6.9 0.7 0.01 5.2 0.4
GA 07 0.0013 48.9 1.6 0.00092 62.2 1.9 0.0011 54.2 1.7
JMC 05 0.0086 15 0.5 0.086 1.6 0.1 0.019 7 0.4
LOC 06 0.0019 14.4 0.7 0.0013 21.4 0.5 0.0014 19 0.6
NC1 04 0.0026 6.1 0.6 0.0048 2.7 0.6 0.0025 5.5 0.6
NC1 06 0.019 1.7 0.2 0.0062 2.9 0.6 0.017 1.5 0.2
NC2 04 0.0016 19.4 1.3 0.001 26.9 1.7 0.0015 21.2 1.4
NON 03 0.01 3.8 0.8 0.0034 11.2 1.2 0.007 5.4 0.8
NOS 02 0.0016 25.4 1.4 0.00091 41.7 1.5 0.0014 28.8 1.4
NS 04 0.002 3.5 0.6 0.0035 2 0.6 0.0024 2.9 0.5

NVN 05 0.00011 228.9 5.1 0.00063 48.9 1.8 0.00027 99.4 3.2
NVS 05 0.00073 8.2 1.6 0.0022 4.5 0.5 0.0016 4.9 0.5
SV 03 0.00058 77.4 1.9 0.00097 49.7 1.5 0.00072 63.9 1.7

Table 3: Parameter estimates for the NS process by survey block and observer platform.

Block effect None ρ µ µ and ρ
Platform A B A B A B A B
w const 26.1 19 2.9 0 25 25.7 40.6 36.4

w varying 17 15.3 0 6.2 12.2 24.4 34.1 45.2

Table 4: AIC values (normalized within plattform) for models with and without a survey block
effect. The top row shows which parameter of the MMPP has a survey block effect. Data for
plattform A and B are treated separately, and results are given both with and without variation
in effective strip width (w).
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Figure 1: Survey block definitions (blue lines), transect lines (black lines) and minke whale
sightings (black diamonds) made by platform A in the survey period 2002-2007. The fol-
lowing blocks have been merged, i.e. treated as a single survey block: {SV,VSN,VSS}→SV,
{FI,FI1,FI2}→FI, {BAW,BA1}→BAW.
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Figure 2: Two dimentional MMPP with disk-shaped high density areas (dashed) and points
uniformly distributed inside these. The transect line (solid line) intersects one of the clusters,
and the part of the transect line inside the disk (thick solid line) becomes a period with high
encounter rate for the one dimentional MMPP. The cluster radius R and length of high density
period V are also indicated.
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Figure 3: Comparison of MMPP-2 and NS process for minke whale data, with the NS process
being matched to the MMPP-2 using the moment criteria from section 2.3. a) Density of
S (distance to cluster center for randomly selected cluster point), b) Probability distribution
of M (number of points in non-empty clusters). The parameters values used in the figure is
µ2 = 0.079 and ρ2 = 0.033 which corresponds to the MMPP fit to platform A data without
any survey block effect.
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