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ABSTRACT 
The abundance of common minke whales in the sub-area 10, 11, and 12 was re-estimated 
using the IO passing mode sighting survey data in 2003, 2005, 2006 and 2007. The hazard 
probability model provides the estimate of g(0) and abundances. The latest estimate of g(0) for 
Top barrel & Upper bridge was 0.798, while the g(0) for Top barrel & IO platform & Upper 
bridge was 0.859. The resultant abundance estimates were 42,080 (2003 sub-area 12 - 
Okhotsk), 2,078 (2005 sub-areas 8, 9 and 12 -Russian EEZ), 1,211 (2006 sub-area 10 - 
Japanese EEZ), 3,391 (2006 sub-area 10 - Russian EEZ), 502 (2007 sub-area 11 - Japanese 
EEZ), and 575 (2007 sub-area 10 - Japanese EEZ).  
 

INTRODUCTION 
 
Japan conducted the IO passing mode sighting surveys in the sub-areas 10, 11, and 12 in 2003, 
2005, 2006 and 2007. Using the data from the Sea of Japan, we provided a preliminary 
abundance estimates assuming g(0) < 1 (Miyashita and Okamura 2007, Okamura et al. 2008, 
2009). In this paper, we revised the estimates of g(0) and abundances by adding the 2003 and 
2005 data obtained from the Okhotsk Sea and into the analysis.  
 

MATERIALS AND METHODS 
 
The survey areas were categorized into 2003OKH (2003 sub-area 12 - Okhotsk), 
2005KURIKAM (2005 sub-areas 8, 9 and 12 -Russian EEZ), 2006JPN (2006 sub-area 10 - 
Japanese EEZ), 2006RUS (2006 sub-area 10 - Russian EEZ), 2007OKH (2007 sub-area 11 - 
Japanese EEZ), and 2007SJ (2007 sub-area 10 - Japanese EEZ). The research effort distance 
was 1,054.46 for 2003OKH, 1732.86 for 2005KURIKAM, 174.2 n.miles for 2006JPN, 1,157.2 
n.miles for 2006RUS (excluding the ROS block which did not have any sighting for minke 
whales), 564.0 n.mile for 2007OKH, and 1051.4 n.miles for 2007SJ. The number of primary 
sightings was 41 schools for 2003OKH, 9 schools for 2005KURIKAM, 3 schools for 2006JPN, 
45 schools for 2006RUS, 23 schools for 2007OKH, and 16 schools for 2007SJ, respectively, 
when the sightings were truncated at the perpendicular distance of 1.5 n.miles. All the 
sighting data with the truncation distance of 1.5 n.miles were employed for the estimation of 
detection function, including g(0), and abundance without any stratification. 

For the estimation of esw including g(0), a hazard probability model by Okamura and 
Kitakado (2009: OK method) was used. In the Russian and Japanese waters, minke whales 
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consist of single animals in general. So, we do not need the complicated handling of school size 
distribution as in Okamura and Kitakado (2009). In addition, because the sample size is small 
for g(0) estimation, we can investigate only the effect of limited covariates. Unlike Antarctic 
minke whale surveys, this study has on-board identification of simultaneous and delayed 
duplicates. So, we adopted a considerably short time (15 seconds) as an error of recorded time. 
The detailed description of the model is given in Appendix. 
 Weather condition considered was Beaufort scale (0-3: good, 4: bad). 
 

RESULTS AND DISCUSSION 
 
The observed school size was almost 1 with a few sightings with the school size of 2 or 3. We 
therefore did not include the school size into detection function as a covariate. The school size 
was regressed using a traditional regression, log(s) ~ g(x), so that the coefficient of g(x) was 
significant at 15% significance level. Thus, the corrected mean school size was used for 
abundance estimation.  
The model without weather condition covariate has the lower AIC value than that with 
weather condition covariate. Thus, we did not include the weather condition in the afterward 
analysis. Whether the weather condition is included or not in the analysis was insensitive to 
the resultant abundance estimates. The difference between (x,y)- and (R,A)-Q functions was 
small in terms of abundance estimation, while the difference of AICs for (R,A)-Q function 
model has the marginally lower AIC value.  

Table 1 shows the results on estimation of g(0) for models. The estimates were given 
for Top, IO, and upper bridge as well as their combination. Diagnostic plots for detection 
functions including g(0) against the perpendicular distance were also provided in Figure 1, 
which indicated that the models were well-fitted. The estimates of g(0) were 0.716 (se 0.16) for 
TOP barrel, 0.617 (se 0.19) for IO platform, 0.505 (se 0.21) for upper bridge, and 0.798 (se 
0.13) for Top barrel & upper bridge (Table 1).  
  The resultant abundance estimates for both models were given in Table 2. The point 
estimates were 42,080 for 2003OKH, 2,078 for 2005KURIKAM, 1,211 for 2006JPN, 3,391 for 
2006RUS, 502 for 2007OKH, and 575 for 2007SJ. Although the abundance estimates for the 
Sea of Japan were lower than Okamura et al. (2009), this would be due to the lower mean 
school size (E(s) = 1 and observed mean school size = 1.14) corrected by school size regression.  
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g0 SE

A 0.716 0.161
B 0.617 0.192
C 0.505 0.213
AUB 0.824 0.121
AUC 0.798 0.134
BUC 0.748 0.160
AUBUC 0.859 0.103

Table 1. g(0)s for each platform and the combined platforms. A, B, and C denote Top, IO platform,
and Upper bridge, respectively.

 
 

year block areasize (n.m2) effort (n.m) nL nS density abund CV
2003 11W 15243 62.7 2 16 0.346 5,281 0.55
2003 CE 110770 248.5 4 4 0.022 2,423 0.69
2003 CNW 149213 235.8 4 1 0.006 860 0.60
2003 CSW 155305 231.9 4 3 0.018 2,730 0.41
2003 OSW 194272 161.4 3 4 0.034 6,543 0.46
2003 SHA 156762 114.2 3 13 0.155 24,244 0.46
2003 OKH_Total 781565 1054.5 20 41 0.054 42,080 0.13
2005 BEN 74303 578.1 6 2 0.005 349 1.52
2005 BES 65401 259.5 4 2 0.010 685 0.51
2005 KUL 137519 895.3 9 5 0.008 1,044 0.47
2005 KURICAM_Total 277223 1732.9 19 9 0.007 2,078 0.12
2006 JPN 51763.7 174.2 3 3 0.023 1,211 0.64
2006 RCM 36496.3 776.1 14 19 0.033 1,214 0.45
2006 RCN 14205.7 252.5 7 23 0.124 1,758 0.45
2006 RCS 13210.0 128.6 3 3 0.032 419 0.83
2006 RUS_Total 63911.9 1157.2 24 45 0.053 3,391 0.13
2007 OKH 9064.0 564.0 11 23 0.055 502 0.36
2007 SJ 27822.5 1051.4 11 16 0.021 575 0.25

Table 2. Abundance estimates using the OK method with estimation of g(0). nL and nS denote the numbers of
replicate lines and sighting, respectively.
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Whole sighting data :Sample size = 136
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Whole duplicate data (Top & IO) :Sample size = 33
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Fig. 1. Graphical diagnosis of the OK model. 
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APPENDIX

A.1. The hazard probability model and the likelihood function
The detection probability density function of the animal positioned at the perpendicular distance

x and the forward distance y assuming a Poisson surfacing pattern with the mean surfacing rate λ is

p(x, y) =
λ

v
Q(x, y) exp

{
−λ

v

∫ ∞

y

Q(x, y′)dy′
}

, (A.1)

We construct a likelihood function as follows:

P (xi, yi, ui) =
p(xi, yi, ui)

esw
, (A.2)

where ui is a type of detection pattern, p is a detection probability density function, and esw is

esw =
∫ xmax

0

∫ ∞

0

all patterns∑
u

p(x, y, u)dxdy. (A.3)

The total likelihood function is then given by

L =
n∏

i=1

P (xi, yi, ui). (A.4)

We estimate parameters by maximizing the logarithm of the total likelihood function.

A.2. Abundance estimation
The population size is estimated with a Horvitz-Thompson-like estimator,

P̂ =
A

2L

n∑
i=1

E(s)
ˆeswA∪B∪C(ηi)

, (A.5)

where L is total survey distance, A is the size of survey area, ηi is a vector of covariates, and the
numerator E(s) is the mean observed school size.

An estimator for the unconditional asymptotic coefficient of variation of P̂ is estimated using the
method similar to standard line transect sampling, and then,

ĈV(P̂ ) =
√

ĈV( ˆesw)2 + ĈV(E(s))2 + ĈV(n/L)2, (A.6)

where θ is a vector of estimated parameters.

A.3. detection probability function of sighting cues
The hazard probability model is given by a logistic form,

Q(x, y) =
1

1 + exp[(τrRγr + τaAγa) + ω]
(A.7)

where τr, τa, γr, and γa are scalar parameters with positive values. The parameter ω is related to
several covariates with a log-link function as follows:
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ω ∼ Platform + Weather.

A.4. Specification of detection function for each sighting pattern
There are three platforms with two independent observers and one semi-independent observer.

The detection pattern is therefore complicated by taking account of duplicate sightings. The prob-
ability density function for each sighting pattern is given below. The contribution to the likelihood
function of detection with each sighting pattern is calculated by each probability density divided by
eswA∪B∪C which is given by

eswA∪B∪C =
∫ xmax

0

∫ ∞

0

λ

v
QA∪B∪C(x, y)

× exp
{
−λ

v

∫ ∞

y

QA∪B∪C(x, y′)dy′
}

dxdy. (A.8)

1. A

p(x, y, A) =
λ

v
{QA∪B(x, y) − QB(x, y)} exp

{
−λ

v

∫ y

0

QB(x, y′)dy′
}

× exp
[
−λ

v

{∫ ∞

y

QA∪B(x, y′)dy′ +
∫ ∞

y+vT

QA∪B∪C\A∪B(x, y′)dy′
}]

, (A.9)

where T = 15/3600.
2. B

Same as A except for exchanging the symbols A and B.
3. C

p(x, y, C) =
λ

v
{QA∪B∪C(x, y) − QA∪B(x, y)}

× exp
[
−λ

v

{∫ y

0

QA∪B(x, y′)dy′ +
∫ ∞

y

QA∪B∪C(x, y′)dy′
}]

. (A.10)

4. A × B

p(x, y,AB) =
λ

v

(
QA(x, y)QB(x, y) exp

{
−λ

v

∫ ∞

y

QA∪B(x, y′)dy′
}

+QA(x, y) exp
{
−λ

v

∫ ∞

y

QA(x, y′)dy′
}

×
[
exp

{
−λ

v

∫ ∞

y+vT

QA∪B\A(x, y′)dy′
}
− exp

{
−λ

v

∫ ∞

y

QA∪B\A(x, y′)dy′
}]

+QB(x, y) exp
{
−λ

v

∫ ∞

y

QB(x, y′)dy′
}

×
[
exp

{
−λ

v

∫ ∞

y+vT

QA∪B\B(x, y′)dy′
}
− exp

{
−λ

v

∫ ∞

y

QA∪B\B(x, y′)dy′
}])

(A.11)

where T = 15/3600.
5. A → B
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p(x, y,A → B) =
(

λ

v

)2

QB(x, y){QA∪B(x, y + vτAB) − QB(x, y + vτAB)}

× exp
[
−λ

v

{∫ ∞

y+vτAB

QA∪B\B(x, y′)dy′ +
∫ ∞

y

QB(x, y′)dy′
}]

(A.12)

where τAB > 15/3600h.
6. B → A

Same as A → B for exchanging the symbols A and B.
7. C → A

p(x, y, C → A) =
(

λ

v

)2

{QA∪B(x, y) − QB(x, y)}

×{QA∪B∪C(x, y + vτCA) − QA∪B(x, y + vτCA)}

× exp
{
−λ

v

∫ ∞

y+vτCA

QA∪B∪C\A∪B(x, y′)dy′
}

× exp
[
−λ

v

{∫ ∞

y

QA∪B(x, y′)dy′ +
∫ y

0

QB(x, y′)dy′
}]

(A.13)

where τCA > 15/3600h.
8. C → B

Same as C → A for exchanging the symbols A and B.
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