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Introduction

At the 62" annual meeting of the Scientific Committee of the International Whaling
Commission (IWC SC) in Agadir (Morocco), Williams et al. (2010) reported
preliminary results from helicopter surveys for Antarctic minke whales and sea ice,
conducted from Polarstern in 2006-07 and 2008-09. The cruise plan (Scheidat et al.
In press) was designed to achieve other research and logistical objectives in
conjunction with reprovisioning the German Antarctic base at Neumayer; therefore
placement of helicopter tracklines around the ship's cruise track could not be
randomized or designed in a systematic manner, but rather was designed to sample
across as wide a range of ice conditions as possible. The resulting survey yielded
over 13,000 km of dedicated trackline effort and 94 on-effort sightings of Antarctic
minke whales in the two years combined. Exploratory analyses suggested that the
highest density of minke whales was found in a narrow band of modest ice
concentration (approximately 5-20%), but reanalysis is required to put robust
bounds on this band to infer habitat preference (Scheidat et al. In press).

The IWC SC welcomed the new survey (subsequently referred to as the "German
data”), but suggested that the data be analysed using methods being developed by
Bravington and Hedley (e.g., Wood et al. 2008; Hedley et al. 2009) to allow reliable
inference (subsequently referred to as the “Australian methods"”). To thatend, FTZ
funded additional analyses of the helicopter survey data using the “Australian”
methods. With the assistance of Dr Natalie Kelly (CSIRO, Australian Antarctic
Division), progress was made on three specific areas:
1. use soap-film smoothers (Wood, Bravington and Hedley 2008);
2. try error distributions (e.g., Tweedie) that are robust to unmodelled
overdispersion in the data; and
3. evaluate new methods developed by Hedley and Bravington to propagate
the variance from the model through to the resulting abundance estimate
(Hedley, Bannister and Dunlop 2009; also reported in Williams et al. 2011).

Results
1. Soap film smoothers versus tensor or thin-plate regression splines

The realities of using the soap-film approach

The soap-film smooths require construction of a study area boundary, which defines
the shape of the two-dimensional surface being modelled. At the descriptive model
stage, this boundary removes all effort and sightings data outside of the polygon,


Andrea Cooke
Typewritten Text
SC/63/IA14

Andrea Cooke
Typewritten Text

Andrea Cooke
Typewritten Text

Andrea Cooke
Typewritten Text


and at the prediction stage, it removes all grid cells outside the boundary. The
preferred model used a 2-dimensional smooth of longitude and ice concentration,
therefore the 2D film is not strictly spatial. For example, in Figure 1, note that there
is relatively poor coverage of transects near longitude 20°W that are in open water
(i.e., 0% ice concentration). Similarly, there are few observations from entirely ice-
covered areas (100% ice concentration) near longitude 40°W. As a result, an
irregular polygon (Figure 1, in red) was placed over the data to select areas in two-
dimensional (longitude, ice_concentration) parameter space in which there was
reasonable coverage.

The prediction grids supplied for both years (grids 2 and 5 to use the labels used in
the figures below and in our Distance project) have longitude and ice concentration
combinations that were on the outside of the soap film polygon. Therefore, we had
to remove quite a few of the prediction grid points from the abundance estimation
step. The spread of points that had to be removed are shown in Figure 1. An
indication of where these are relative to space (longitude, latitude) are shown in
Figures 2 (Year 1) and 3 (Year 2).
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Figure 1 The soap film boundary used in the s(lon, ubiceconc) smooth given in
red line; black open circles indicate locations of original data; blue and green
open circles indicate locations in the prediction grids for year 1 and year 2,
respectively; blue and green solid circles indicate prediction points that do not
lie within the soap film polygon and which had to be removed from prediction
process.
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Figure 2 Grey squares indicate the locations of the original prediction grid
(corresponds to grid 2 in Distance project); black crosses indicate longitude-ice
concentration combinations that were allowed after using a soap-film polygon.
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concentration combinations that were allowed after using a soap-film polygon.
In summary, the soap-film smoothers successfully dealt with the problematic edge

effect reported in Williams et al. (2010). Figure 4 shows the predicted density

Figure 3 Grey squares indicate the locations of the original predict
surface from a conventional smooth.

(corresponds to grid 5in
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Figure 4. BEFORE soap-film smoothing. Note the high-density areas predicted in
the upper left- and right-hand sides of the study area, where there was little effort.
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Figure 6: AFTER soap-film smoothing. Note the lower density predicted in the
upper-left-hand side of the plot.



2. Error distributions that are robust to overdispersion
One of the biggest problems with the preliminary (Williams et al. 2010) analysis was
the failure of the model to capture all of the overdispersion in the data. The
Tweedie family is robust to this kind of distribution (Jergensen 1987). Furthermore,
standard plots offered by statistical packages for regression diagnostics do not tend
to cater for discrete distributions, such as Poisson. Here randomized quantile
residuals plots have been used to explore model fit of the quasi-Poisson and
Tweedie distributions (Dunn and Smyth 1996). Figure 7 shows the residuals in the
original model, using standard model diagnostics plots supplied by the mgcv library
in R; Figure 8 shows the residuals in the original model (Williams et al. 2010), but
displayed as randomized quantile residuals; and Figure g shows the randomized
quantile residuals for a Tweedie family.
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Figure 7. BEFORE Tweedie. Residuals of the original (quasi-poisson) distribution.
These residuals are non-normal with a right skew.



Response versus fitted QRES versus leverage
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Figure 8. BEFORE Tweedie. Model diagnostics given using the randomized quantile
residuals. These residuals are approaching Normal, but there is still a right skew.
This indicates the quasi-Poisson family does not quite account for the larger whales

sightings numbers.
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Figure 9. Residuals AFTER Tweedie, and using randomized quantile residuals;
shows nice distribution of errors, normally distributed around zero. The model
shows excellent fit to the data, with Tweedie parameter = 1.1.

3. Propagating detection function uncertainty through to variance on the
abundance estimate using the GAM.fixed.priors approach

Exploratory analyses in Distance indicated that a half-normal detection function
fitted the perpendicular sightings distances nicely. The form of a half-normal
detection function is:

2

g(x) = exp(%),



where x is the perpendicular distance from the trackline. In the detection function
summary tag in Distance, the o parameter corresponds to exp(scale intercept
estimate); this estimated intercept parameter is noted here as v. Note that there is
only one parameter estimated here, the scale intercept, v.

From this detection function we can estimate the effective strip width, u.

P jowg(x)dx _ J-Owexp(ze)(;()j/x 2)) _ ﬂ'exngX 2) ,

where w is the truncation distance.

The effective strip areais then x|, where [is the length of the segment. (In other
analyses, it is important to note whether one has single- or double-sided effort in
estimating effective strip area, but this information falls out a bit later when we take
the derivative, so we won't consider it further.)

Using the variance-estimation methods of Hedley and Bravington (described in
Hedley et al. 2009 and Williams et al. 2011), the gam.fixed.priors code takes the
hessian from the fit of the detection function and the partial derivative of the
effective strip area relative to the parameters in the detection function. Also recall
that the effective strip area enters the model as a log(offset) variable. So, the
function and its derivative that we need to consider are:

« | 7TeXp(vx2)
olog(esa) _ log(l \/ 2 ) 1

ov ov B

And, so, a vector of ones enters the gam.fixed.priors code.

When we run all this, we get exactly the same abundance predictions from GAMs
including and not including the fixed priors, for both plain smooths and soap film
smooths. These are values given below. The predicted density surface plots are
similar.
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Figure 10. GAM with no soap film or fixed priors.
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Figure 112. GAM with fixed priors
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Figure 12. GAM with soap-film smoother
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Figure 13. GAM with soap-film and fixed priors.

Final points: abundance of Antarctic minke whales in the study area

The preferred model is Tweedie parameter 1.1, a soap film smooth and GAM fixed
priors. The resulting abundance estimates (and coefficients of variation) are:

Year 1: abundance: 8785.7 (CV = 0.497)
Year 2: abundance: 878.4 (CV = 0.632)

The best estimate of distribution is shown in Figure 14.
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Figure 14. Best estimate of Antarctic minke whale density in the study area, on
average, during the time of the surveys.

Follow-on work (Seeking guidance from SC/IA members).

A cumulative distribution function plot (Figure 15) was generated to show the
cumulative number of sightings as a function of distance to the ice edge (defined as
the 15% ice contour). The results indicated a narrow band of high density within a
few tens of kilometres from the ice edge.

We used historical(1979-2007) passive microwave sea ice concentration data derived
using the modified bootstrap algorithm (Comiso and Nishio, 2008) provided by the
National Snow and Ice Data Center (Comiso, 1999). Figure 16 shows trends in
monthly mean ice concentration for the entire Antarctic for January. Notably, there
has been a significant decline in ice concentration in January around the Antarctic
Peninsula, particularly on the western side. Note that trends near the ice edge
largely reflect trends in the location of the edge, rather than a trend in the ice
concentration south of the edge i.e., a southward trend in the position of the ice
edge will manifest as a strong trend in concentration, as regions previously ice-
covered become ice-free; yet there may be no change in the ice conditions south of
that edge.
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Figure 15. Cumulative number of minke whale sightings (Y axis) as a function of
distance to the ice edge (along the X axis, ranging from 1000km inside the ice in
negative values, to 3000km outside the ice, in positive values).
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Figure 16. Trends in ice concentration (in million square km) for January, 1979-2007.
The legend is in average change (in %) per decade by region. Data (see body of text,
above) from the National Snow and Ice Data Center (Boulder CO).
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