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Abstract

The OK and SPLINTR minke whale analyses both use the IDCR/SOWER Sightability measure as

a covariate to model the environmental e�ects on the probability of detection on the track line, g(0).

Sightability corresponds to a single ordinal measure that encompasses/summarises all of the various

environmental visual e�ects, to give an indicator of how easy it is to observe a whale. It is important,

in these models, that the Sightability measure is consistent across time and space. However, since

Sightability is a subjective ordinal category, based on experience and judgment, this may not be

the case. IDCR/SOWER also collected a number of other environmental variables: Visibility, Air

Temperature, Surface Temperature, Wind Speed, Weather, and Sea State. In this paper we present

a tree-based analysis that maps these various environmental covariates to Sightability, allowing the

prediction of Sightability for given conditions. This model is built using recent data from a single

vessel and then predictions made for all the data providing a standardised and consistent measure of

Sightability, across time and di�erent vessels.

1 Introduction

There are reasons to doubt the long-term consistency of the Sightability variable in the IDCR/SOWER

dataset, as the observed values are based on personal experience and judgment. Over the long time period

covered by IDCR/SOWER it is possible that this subjective decision process may have changed, or di�er

between vessels. To address this issue, we propose a standardisation of the IDCR/SOWER Sightability

variable. The goal motivating this procedure is that all the standardised Sightability data will have a

similar underlying mechanism/relationship to the other environmental measures, and the interpretation

of Sightability will be consistent across all time periods and vessels.

2 Methods

We began by partitioning the data (CP2/3) into three time periods (1986-1992, 1993-1998 and 1999-

2003), and taking the most recent time period 1999 - 2003, as our standard (training data). Using the

training data, we modelled the relationship between Sightability and other recorded variables (Visibility,

Air Temperature, Surface Temperature, Wind Speed, Weather, Sea State, and Vessel). We then predicted

for all time periods from this model, using the SM2 Vessel as the baseline. This gives predictions for all

observations using the corresponding observed environmental data but assuming that the Vessel used was
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SM2. Hence, we obtain a re-calibration of the Sightability variable for the earlier time periods, based on

the most recent period of SM2.

To model the Sightability we are primarily interested in a predictive model; interpretation is of

secondary importance. We used aggregated boosted trees (ABT; De'ath 2006), a variant of the popular

boosted regression trees (BRT; see Hastie et al., 2001). The results of ABTs and BRTs are typically very

similar, although the aggregated version tends to have slightly better predictive capability. Both ABTs

and BRTs provide excellent predictive models by exploiting the predictive power of ensemble models

(Hastie et al, 2001).

ATSTs are not designed to be used on multi-class data, such as the Sightability variable. To over-

come this problem, we employed a well-known approach for multinomial data. The three Sightability

response categories (2, 3, and 4&5) were modelled using two separate ABT models. The models specify

Pr(Sightability > 2), and Pr(Sightability is 4&5 | Sightability>2). The second model is obtained by

sub-setting the data. Predictions of the multiple class outcomes are made by suitably combining the

predicted probabilities from each individual model. This leads to the vector of class membership for each

observation, which is hard-clustered to produce a prediction of the most likely class.

One issue that arose was that the Visibility variable itself went through a substantial change in the

way it was recorded. In the time period up until 1994 Visibility was estimated by the o�cer in the

wheelhouse, whereas after this time this was performed by the Captain. This change can be seen by a

sustained drop in visibility in 1994; pre-1994 Visibility ranged from 0-6 Nm, after 1994 the range is 0-3

Nm (Figure 1). After comparing radial sighting distances to recorded visibility it appears that pre-1994

the visibility measure corresponds more towards the maximum possible distance at which sightings could

occur, whereas from 1994 onwards the visibilities recorded are more conservative and relate more closely

to the average or reasonable distance at which a sighting could occur. To correct for this change we

altered the Visibility variable so that the distribution functions of the two periods were similar. This was

done by stratifying on Weather and Sea state and quantile matching the early data to the latter data

(Figure 2). The strati�cation was done to allow for the possibility that the overall pattern of weather

conditions may have systematically been di�erent between time periods (e.g. this would occur if the

latitudinal distribution of survey e�ort di�ered in any of the time periods).

3 Results

The resulting models suggested that all the variables considered had, at least, a small a�ect on the value of

Sightability. The Visibility variable was most important, while Vessel and Weather were least important.

There did appear to be a di�erence in the scoring of Sightability over the three time periods. In

particular, it appears that the scoring in the earlier period tended to have higher values than those in

the later period, and is subsequently adjusted (see Figure 3).

4 Discussion

Given the range of weather conditions experienced in Antarctic waters, any distance sampling analysis of

Antarctic whales will generally require some suitable environmental covariate(s) to take in to account the

e�ect on g(0). The subjective nature of Sightability and the long time period of IDCR/SOWER suggests

that some empirical examination of the environmental measures was warranted.

Examing the new standardised Sightability measure it was as expected consistent with the other

enviromental variables. The actual de�nition, or value, of Sightability is arbitrary in that Sightability

values themselves do not directly correspond to a speci�c physical quantity. Therefore, attempting
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Figure 1: Plots of the Visibility measure versus time (row number of ordered data). Notice the large
change in Visibility for both vessels at 1994

to validate, or interpret, the tree classi�cation does not make sense. Instead the new standardised

Sightability masure should be judged on its e�ect on the subsequent SPLINTR and OK models. The

overall abundance estimate from these models may possibly not be greatly e�ected by the choice of

Sightability metric; where it is hoped the e�ect will be seen in improved and more consistent model

diagnostics.
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Figure 2: Results from the quantile matching for the Visibility variable, solid line = post 1994 era, dash
line=pre 1994, dotted line= corrected pre 1994 data.
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Figure 3: Plots comparing the new predicted Sightability with the original Sightability for the di�erent
time periods and vessels. These plots show that as expected for the training data (bottom right plot)
Sightability was generally unchanged; for the earliest time period Sightability was changed slightly;
whereas for the middle time period the original Sightability recorded was higher and the standardisation
lowered the values overall.
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