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ABSTRACT 

Two approaches are presented for the analysis of select data sets in the estimation of 
environmental variability and auto-correlation in reproductive rates of baleen whales. Both 
approaches recognize that for a given stock, the average calving interval is the reciprocal of the 
average proportion calving, and thus allow for the incorporation of both data types in a unified 
estimation framework for parameters of interest. For an unknown stock of baleen whale, the extent 
of environmental variability is (depending on the approach) estimated to be 0.347 and 0.396 
(standard deviations in log-space), and the estimates of the auto-correlation parameter are 0.614 
and 0.288. The estimates of the hyper-parameters from this meta-analysis framework can be used 
in simulations to inform the lower end of the range for MSYR values. In general, the resulting 
parameter estimates appear to be mostly consistent with SC/63/RMP20, which employed a 
different modelling framework and included more available data on reproductive variability. 
Therefore, these results may provide some confidence in the robustness of available estimates, 
given different data sets and modelling assumptions.  

INTRODUCTION  

An ongoing aspect of the RMP review has been the reconsideration of the plausible range 
used for maximum sustainable yield rate (MSYR) used for testing the Catch Limit 
Algorithm of the RMP. This range is currently 1% to 7% (expressed in terms of the 
mature component of the population). Information on observed population growth rates at 
low population sizes has been used to inform this range (e.g. Best, 1993). However, it has 
been recently pointed out that ignoring environmental variability and/or temporal 
autocorrelation in vital rates, and only using observed population growth rates could lead 
to a bias in the estimated lower end of the range of plausible values for MSYR (Cooke, 
2007). In order to provide a basis for estimating the expected level of inter-annual 
variability and auto-correlation, an intersessional workshop was recently held (IWC, 
2011) during which available time series for annual reproductive success in baleen 
whales were made available. To that end, the goal of this study is to incorporate suitable 
available data in a meta-analysis framework and provide estimates for the parameters 
necessary to re-evaluate the lower end of the expected range of MSYR values for an 
unknown stock of baleen whales.  

METHODS 

Data 
Following the 3rd intersessional workshop on the review of MSYR for baleen whales 
(IWC, 2011), we determined that several data sets were relatively sparse, i.e. they did not 
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have many data points in the time series (e.g., BCB bowheads), or had many years with 
observations of zero calving females (e.g., Gulf of CA blue whales). Hence, only a subset 
of the available data was used when fitting the models in these analyses.  

Five stocks were included here. Four of these stocks have annual estimates available 
for both calving interval and proportion calving: 1) Gulf of Maine (GOM) humpback, 2) 
Gulf of St. Lawrence (GSL) humpback, 3) North Atlantic (NA) right, and; 4) South East 
Alaska (SE AK) humpback whales. Eastern North Pacific (ENP) gray whales were also 
included, but this stock only has annual estimates of calving proportions available. The 
calving interval and proportion calving data are shown in Figures 1 and 2.  

General modeling approaches: ‘TK’ and ‘JB’ 
Two approaches were used to fit the data in these analyses. These are denoted here as the 
‘TK’ and ‘JB’ approaches. Both approaches are based (at least for certain scenarios) on 
hierarchical models across stocks and are similar to each other in many respects. They do 
differ from previous efforts (e.g. Cooke, 2011; Brandon and Kitakado, 2011) in that the 
estimated parameters for individual stocks are not treated independently when both 
interval and proportion data are available for the same stock. The key assumption 
underlying this difference is the recognition here that the average calving interval across 
years is the inverse of the average proportion calving. This allows the interval and 
proportion data for the same stock to be analyzed simultaneously by estimating a 
common parameter for each stock (as opposed to two different parameters for each stock, 
and likewise two different parameters across stocks for each type of data).  

The TK and JB approaches were implemented using the random effects (RE) module 
of AD Model Builder software and WinBUGS, respectively. The TK approach provided 
estimates based on maximum likelihood values, and the JB approach provided estimates 
as probability distributions based on a Bayesian framework.  

There are three noteworthy differences between the TK and JB approaches:  

1) The TK approach assumed that the annual process error residuals were identical for 
a given stock, i.e. after taking into account the necessary transformation, the deviations 
from expected calving proportions and intervals were the same each year. The JB 
approach only assumed that the process error residuals were i.i.d. for each stock, but 
allowed for the annual residuals to be different between the proportions and intervals for 
each stock.   

2) Each approach assumed a different hierarchical structure for the auto-correlation 
parameter ρ. Further details on the model structure are provided below.   

3)  For those interval data that did not have an empirical estimate of the sampling 
variance (i.e., GSL humpback interval data), the TK approach assumed that the sampling 
variance was equal to the maximum reported variance, while the JB approach assumed 
those missing variances were equal to the average variance from years with available 
estimates.  



Proportion Data 
Both the TK and JB approach can be considered to have modelled the proportion data in 
the same way.  
Let it  be the observed proportion of mature females for stock i calving in year t, such 

that: 
| ~ ( )it it it itp Po N p       (1) 

Where:  
 itp   is the proportion calving for stock i in year t, and; 

 itN   is the number of mature females for stock i in year t.     

 
The annual proportion calving was assumed to be subject to environmental variability, 
such that:  

logit( )it i itp          (2) 

Where:  

i  is the expected proportion calving across years for stock i, and; 

it   is the deviation from that expectation for stock i in year t due to 

environmental variability, where the environmental deviations are  
assumed to be correlated through time, such that:   
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 (3) 
Where:  

i   is the degree of auto-correlation for stock i;  

itr   is the number of years since the last observation for stock i in year 

t (e.g., for the first year rit =0, if successive observations rit =1, if 

a gap of one year between observations then rit =2, etc.)3;  

it   is 2~ (0, )iN  , and; 

i   is the standard deviation of the environmental process error  

for stock i.  

Interval Data 
The TK approach for the interval data is described below. This is also the same as the JB 
approach, except where otherwise noted (further details on the treatment of the process 
error residuals for the JB approach are provided under ‘The JB approach to the process 
error residuals for interval data.’).  

Let yit be the observed calving interval for stock i in year t, such that: 

                                                           

3 Note that due to the different treatment of the process error residuals between the TK and JB approaches, that the values for rit are 
also different for each approach. For example, the TK approach will on average have lower values for this input, because assuming 
identical process error residuals between data sets effectively reduces the average gap between available observations.  



ˆ~ ( , )it it ity N v       (4) 

Where:  

it   is the expected calving interval (equal to the inverse of the  

proportion calving, i.e. 1/it itp   for the TK approach, see 

below for the JB approach) for stock i in year t, and; 

 îtv   is the known variance of the sampling error associated 

with the calving interval estimate.    

The JB approach to the process error residuals for interval data  
The calving interval each year was related to the expected calving proportion for each 
stock, such that:  

 1/ antilogitit i it          (5) 

Where:  

it  is the deviation from the expected calving interval for stock i in 

year t due to environmental variability, where the environmental 
deviations about the expected interval are assumed to be correlated 
through time, such that:   
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Where:  

itg  is the number of years since the last annual calving interval 

observation for stock i in year t (see the definition of rit for the 
proportion data);  

it  is 2~ (0, )iN  , hence the annual process error residuals between 

proportions and intervals for each stock are not identical in the JB 
approach, but they are i.i.d. 

Scenarios 

TK Approach 
Under the TK approach, five scenarios were examined. These involved different 
hierarchical structures for the parameters of interest,   (the extent of process error due to 
environmental variability) and   (the auto-correlation in the process error residuals due 
to environmental variability). The scenarios were: 1) Common   and common   over 

stocks; 2) Common   with independent (but not necessarily i.i.d.) i  for each stock; 3) 



Independent i  for each stock and a common   across stocks; 4) Independent i  and 

independent i  for each stock, and; 5) Hierarchical structure for i  and i  across 

stocks, i.e. the values for each parameter were allowed to be different for each stock, but 

i  and i  were assumed to be i.i.d. and each parameter shared common estimated 

hyper-parameters.  

For this last scenario, i  for each stock was assumed to be drawn from an underlying 

log-normal distribution with a common variance, i.e. 2ln( ) ~ (0, )i N   , where 

2ln( ) ~ ( , )N     . Likewise, the i  were assumed to be drawn from an underlying 

distribution with a common variance across stocks, such that: 2logit( ) ~ (0, )i N   , 

where 2ln( ) ~ ( , )N      and 2* 1i i   .  

The TK approach estimated the parameters of interest (including , ,  and         

for the hierarchical scenario) based on a maximum likelihood framework by analytically 
integrating over the process error residuals, and compared the ability of the various 
scenarios to fit the data using AIC. 

JB Approach 
As stated above, this approach differed in its treatment of the hierarchical structure for 

i  and also in the assumptions made regarding the process error residuals between the 

interval and proportion data.  

The hierarchical structure for i  was implemented by first transforming a beta random 

variable, such that:  

2 1i i           (7) 

Where:  

~ (shape1, shape2)i Beta             (8) 

The hyper-parameters, ‘shape1’ and ‘shape2’, for the auto-correlation parameter were 
assumed to be log-normally distributed (keeping the resulting values positive as required 
by the assumption of the beta-distribution):  

 
 

ln shape1 ~ (0, )

ln shape2 ~ (0, )

N

N








       (9) 

Two values for   were explored, corresponding with a ‘strict’ hyper-prior (   = 

0.20) and a ‘relaxed’ hyper-prior (   = 1) on the shape parameters.  



The JB approach to the process error residuals for interval data allowed the vectors of 
annual process error residuals to differ between interval and proportion data for the same 
stock (Eqns. 3 and 6). These random effects were however assumed to be i.i.d., such that:  
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Where:  
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Finally, in this approach, a hierarchical structure was assumed for the expected 
reproductive rates between species of baleen whales:  
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      (12) 

RESULTS 

TK Approach 
The results of the TK approach are presented in Table 1. The scenario (#3) with the 
lowest AIC value, estimated independent i  for each stock (with no hierarchical 

structure) and a single    common to all stocks. The average value for  across stocks 

was estimated to equal 0.19, with the common   estimated to be 0.6242.  

The scenario (#5: “Random”,”Random”) which has a hierarchical structure, and is 
therefore more informative with respect to the goals of this project, estimated the 
expected value of environmental process error for an unknown stock (mean_sigma in 
Table 3) to equal 0.3472. The standard error of this estimate in log-space (sd_logsigma in 
Table 3) was equal to 0.0718. The expected value for   for an unknown stock was 
estimated to be (mean_rho in Table 3) 0.6143, with a standard deviation in logit-space 
(sd_logitrho) of 3.013.  

The estimated value (0.347) for the extent of process error for an unknown stock was 
similar to that (0.396) estimated by the JB approach. Both of these approaches estimated 
that the expected value of auto-correlation for an unknown stock was positive, but the 
hierarchical scenario for the TK approach estimated a higher value (0.6143) than the JB 
approach (median = 0.29). 



JB Approach 
The scenario with a ‘relaxed prior’ on   caused numerical difficulties and continued 
crashing of JB’s WinBUGS code. Hence, no results are available for alternative hyper-
prior values for   under this scenario. However, the ‘strict prior’ structure did lead to a 
uniform prior on   (Fig. 3, left panel), and this is perhaps more desirable than the 
resulting prior on   for the relaxed prior scenario (Fig. 3, right panel).  

MCMC chains were run for 400,000 iterations, saving every 300th iteration, and 
discarding the first 10,000 samples as burn-in. This resulted in 1300 samples from the 
posterior. Diagnostics for the chains were generally positive and indicated that 
convergence had been achieved.   

However, the chains specific to ENP gray whales suggest that running more iterations 
in future analyses may be warranted. For example, even after thinning the chains by 
sampling only every 300th iteration, there was still a relatively high level of auto-
correlation between the samples for ENP gray whales (Fig. 4). The scenario which 
excluded ENP gray whales from the analysis provided a sensitivity test, and showed that 
the parameter estimates were largely indifferent to the inclusion of this data-set. The 
greatest difference in estimates between each data scenario was for   (0.396 vs. 0.295; 

with and without ENP gray whale data)(Table 2). 

The reason for this difference can be seen in the plots of posterior densities for the 
stock-specific estimates of σi (Fig. 5). The calving proportion data for ENP gray whales 
are relatively variable, and hence excluding this data set resulted in a lower estimate of 
average variability across stocks. This pattern is also consistent with the estimates of 
stock-specific variability from the TK approach (Table 1; see Sigma for ENPg).   

The stock-specific estimates for ρi are shown in Figure 6. While ENP gray whales were 
estimated to have had the highest inter-annual variability in reproductive success, they 
are also estimated to have the lowest level of auto-correlation. This may be due to in part 
to two factors: 1) it seems likely that the auto-correlation and inter-annual variability 
parameters are correlated and somewhat confounded with respect to estimation (hence 
higher values for inter-annual variance may lead to lower estimates of auto-correlation, 
all else being equal), and; 2) ENP gray whales were the only stock in the data sets fitted 
in these analyses which were not represented by calving interval data. Observed calving 
intervals are likely buffered to some extent with respect to inter-annual environmental 
variability, and can be thought of as a moving-average of reproductive success. Whereas, 
the annual proportion calving might be expected to be more highly variable. Indeed this 
pattern is evident in the data sets adopted in these analyses for which both types of 
observations are available (Figs. 1 and 2).  

It is interesting to note that all of the estimates of stock specific auto-correlations were 
positive, with essentially zero posterior probability for values less than zero (Fig. 6). This 
is in contrast with the TK approach, where several stocks were estimated to have negative 
auto-correlation parameters (Table 1). The explanation for this is not immediately 
obvious. It may have to do with the difference between the estimation frameworks, or 
perhaps the different prior structures on the auto-correlation parameters (e.g. normal in 
logit space vs. a beta distribution).  



The MCMC chains for the posteriors of the hyper-parameters for the JB approach all 
appeared to have converged. Auto-correlation between samples was essentially non-
existent (Fig. 7) and the running quantiles all appeared to have stabilized (Fig. 8). The 
posteriors for the hyper-paramters related to the extent of inter-annual variability in 
reproductive rates are shown in Figure 9 for the JB approach. There was very low 

posterior probability of values of θσ (exponentiated) greater than 1.0 (Fig. 9, left panel). 
This is generally consistent with the results from SC/63/RMP20.  

The shape parameters for the hyper-priors on the auto-correlation coefficient were not 
greatly updated by the data (Fig. 10), but the effect was large enough that the posterior 
for the auto-correlation parameter for an unknown stock ρ0 was shifted away from the 
implicit uniform prior towards more positive values (Fig. 11, left panel). The median of 
the posterior for ρ0 was estimated to be 0.288, although there is substantial probability of 
values lower and (especially) higher than this. The posterior for the inter-annual variation 
in reproductive success for an unknown stock σ0 (Fig. 11, right panel) had a median that 

corresponded with that for the posterior of its hyper-parameter θσ (Fig. 9, Table 2), but 
the resulting posterior for σ0 was skewed to the right with a longer tail.  

DISCUSSION 

In summary, given the posterior distributions for the hyper-parameters of interest, it 
will be possible to generate stochastic population trajectories and investigate the effects 
of inter-annual variability and auto-correlation in reproductive rates for the MSYR of an 
unobserved stock, based on the results of this meta-analysis (e.g., Punt, 2011).  

However, several considerations should be kept in mind. Firstly, these analyses did not 
utilize all of the available data. We had selected several of the most informative data-sets 
from those available, based largely on the criteria of time-series length. It would be 
interesting to re-run these analyses incorporating all of the available data. It is not clear if 
this would alter the parameter estimates however, because the data-sets used in these 
analyses are likely the most informative available.  

For example, excluding the ENP gray whale data from this analysis did not appear to 
change the results to a great degree, and the other excluded data-sets are perhaps even 
less informative. There are also some inherent uncertainties in certain available data-sets 
(e.g. interpreting the values for SA right whales, which are themselves based on 
somewhat complicated modelling assumptions, D.Butterworth pers. comm.) that led us to 
exclude them from the analyses.   

In general, one advantage of both of these approaches is the simultaneous analysis of 
stock-specific data for calving interval and proportion data. This allows for a single 
parameter estimate for those quantities of interest, as opposed to resulting in a parameter 
estimate based on proportion data and another based on interval data. There are several 
details in these approaches which may be improved in future analyses (e.g. assumptions 
regarding the relationships between process error residuals for different data sets), but in 
general this modeling framework should serve as a viable alternative for estimating the 
extent of environmental variability and auto-correlation in reproductive rates for baleen 
whales. Further, the results between the two approaches explored here are largely 



consistent with those from Cooke (2011), who utilized a different modeling framework 
and more of the available data. Therefore, these results may provide some confidence in 
the robustness of the estimates given different data sets and modeling assumptions.  
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Table 1.  

Results for the TK approach. The scenario with the lowest AIC value is highlighted. The scenario in the bottom row (“Random”,”Random”) most closely 
corresponds with the JB approach.  

  

#Observations GMh GSLh NAr SEAKh ENPg

Interval 22 11 25 23 0

Proportions 27 25 29 25 16

GOMh GSLh NAr SEAKh ENPg GOMh GSLh NAr SEAKh ENPg

Common Common -42861.9 85727.8 0.355 0.353

Common Different -42840.1 85692.2 0.524 -0.990 -1.000 0.991 0.992 0.344

Different Common -42839.8 85691.6 0.000 0.000 0.074 0.147 0.720 0.624

Different Different -42838.0 85696.0 0.000 0.375 0.095 0.245 0.612 0.999 -1.000 0.780 0.962 0.411

Random Random -42859.8 85727.6 0.313 0.308 0.305 0.316 0.390 -0.211 0.115 0.833 0.813 0.228 0.347 0.072 0.614 3.013

mean_
rho

sd_
logitrho

Sigma Rho mean_
sigma

sd_
logsigma

Sigma Rho loglike AIC

 

 

Table 2.  

Results for the JB approach. Medians [lower, upper 95th percentiles] are shown for the posterior distributions of the hyper-parameters. The values for  have 

been exponentiated and are in standard space, while those for   are untransformed and hence represent the standard deviation of the process error variability in log-

space. Hence the values of those parameters are directly comparable with the mean_sigma and sd_logsigma estimates in Table 1. The relaxed hyper-prior for ρ scenario 
crashed JB’s WinBUGS code after repeated attempts, and hence results are not available here.   

 

Dataset Hyper-prior for rho exp( )     shape1 shape2 

with ENP gray strict prior on rho 0.396 [0.141, 0.816] 0.576 [0.24, 2.13] 1.127 [0.745, 1.7] 0.7674 [0.543, 1.114] 

with ENP gray relaxed prior on rho Crashed Crashed Crashed Crashed 

without ENP gray strict prior on rho 0.295 [0.075, 0.790] 0.526 [0.20, 2.78] 1.096 [0.763, 1.625] 0.7892 [0.528, 1.156] 
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Figure 1. Annual proportion of mature females calving are shown.  
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Figure 2. Annual calving intervals are shown.  

 



 

 

 

Figure 3. Ten thousand samples from the prior distribution of ρ, with the standard deviation in log-space for the 
hyper-priors (shape1 and shape2) of the Beta distribution equal to 0.20 (left panel) vs. 1.0 (right panel).  
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Figure 4. Auto-correlations are shown between MCMC samples for the parameter ρi. These plots are indicative 

of the results for σi as well. The diagnostic results for the scenario excluding ENP gray whales were also very 
similar for the remaining stocks. That is, only ENP gray whales showed some signs of benefiting from running 
longer chains in future analyses.  

 



GOM humpback (sigma)

    0.0     1.0     2.0

    0.0
    1.0
    2.0
    3.0
    4.0

GSL humpback (sigma)

    0.0     1.0     2.0

    0.0

    1.0

    2.0

    3.0

NA right (sigma)

    0.0     1.0     2.0

    0.0

    2.0

    4.0

    6.0

SE AK humpback (sigma)

    0.0     1.0     2.0

    0.0
    1.0
    2.0
    3.0
    4.0

ENP gray (sigma)

    0.0     1.0     2.0

    0.0

    1.0

    2.0

    3.0

 

Figure 5. Stock-specific estimates of σi are shown for the JB approach. 
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Figure 6. Stock-specific estimates of ρi are shown for the JB approach. 
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Figure 7. Auto-correlations between MCMC samples for the hyper-parameters of the model. Note that 
theta.logsigma is in log-space and tau.logsigma is in units of precision (1/variance). 
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Figure 8. Running quantiles for the hyper-parameters of the model. Note that theta.logsigma is in log-space and 
tau.logsigma is in units of precision (1/variance). 

 

 



  

Figure 9. Posterior distributions are shown for the hyper-parameters θσ (exponentiated) and σσ (in log-space), 

i.e. the expectation and standard deviation for the extent of environmental process error σ in reproductive rates. 

These estimates correspond to the scenario with strict hyper-priors for ρ, and are conditioned on the dataset 
including ENP gray whales.  

   

Figure 10. Prior (black lines) and posterior (gray areas) distributions are shown for the ‘shape1’ and ‘shape2’ 

hyper-priors on ρ. 

 



 

Figure 11. Prior (black line) and Posterior (gray area) distributions are shown for the auto-correlation parameter 

ρ0 and extent of process error σ0 for an unknown stock.  

 

 

 

 

 

 

 

 

 

 

 

 


