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ABSTRACT 

A Bayesian meta-analysis of time series of baleen whale calving rates and intervals, supplied 
to the 3rd Scientific Committee Workshop on baleen whale MSYR, was conducted in order to 
determine probability distributions of the process variance and serial correlation coefficient 
for calving rates and intervals.  Ten series of calf counts or calving proportions, and eight 
series of calving intervals were used in the analysis.  These two sets were analysed 
separately, because for most stocks both types of series were available.  The analysis of calf 
count/calving proportion series and calving interval series show that in both cases the data 
are approximately equally consistent with the entire possible range (-1,1) of serial correlation 
coefficients.  The calf count and calving proportion time series suggest that all values of inter-
annual process variance in the range [0,1] are plausible, but with values near 1 being slightly 
less likely. The calving interval series show lower values of process variance, with σ > 0.4 
being unlikely. To elucidate the relation being calving interval variance and calving rate 
variance probably requires explicit modelling of the calving cycle. The results do not enable 
direct inference of the variance of net recruitment rates, because variance in mortality rates 
has not been considered. 

 

1. INTRODUCTION 
The issue of the maximum sustainable yield rate (MSYR) has long been considered of 
central importance for the management of baleen whale populations and their exploitation. 
The IWC Scientific Committee has held a number of recent workshops on the topic (IWC 
2009, 2010, 2011).  The MSYR is related to r0, the rate of increase at low population sizes, 
sometimes called the intrinsic rate of increase.  Butterworth and Best (1990) argued that, 
given certain assumptions, one would expect MSYR  ≥  r0/2 (although McCall and Tatsukawa 
(1994) noted that this would not always be the case).  In the context of deterministic models, 
r0 is often referred to as the maximum rate of increase.  However, as noted by Cooke (2007), 
it is important, in cases where reproduction and/or mortality are influenced by time-varying 
environmental factors, to distinguish between r0, the rate of increase at low population sizes 
under average environmental conditions, and rmax, the maximum rate of increase at low 
population size that is realised only under favourable environmental conditions.  
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The three workshops on MSYR have devoted considerable attention to the issue of 
environmentally-caused variability. Cooke (2007) showed that estimates of MSYR derived 
from fitting deterministic population models to observed increasing trends in recovering 
populations can be positively biased in the presence of environmentally-caused variation in 
net recruitment rate, and that the degree of bias depends on both the level of inter-annual 
process variability, σ, and the inter-annual serial correlation, ρ.   At the most recent workshop 
(IWC 2011), about 20 time series of data relating to calving rates or intervals in baleen 
whales were compiled for the purpose of estimating the level of variability in calving rates.  In 
this paper, a Bayesian meta-analysis of these data sets is conducted to estimate the 
distribution of variability and serial correlation in calving rates in baleen whale populations, on 
the assumption that these data sets are typical for baleen whales. 

 

2. DATA AND METHODS 
2.1. Data 

The time series relating to calf production in baleen whales that were submitted to the 3rd 
MSYR Workshop (IWC 2011) are listed in Table 1.   

There are four types of series; raw calf counts; calving proportions (as a fraction of either 
known mature females or of the total stock); and population abundance. 

More than one kind of series is available for several stocks.  In order not to include multiple 
versions of the calving data from a single stock into an analysis, which would lead to pseudo-
replication, the analysis was divided into two batches: 

Batch A. Calf counts or proportions (10 stocks) 

Batch B. Calving intervals (8 stocks) 

In cases where both calf counts and calving proportion data were available, the calving 
proportion series was used, unless the calf count series was longer.  For Gulf of St Lawrence 
fin whales, the calf count series (1983-2009) was used in preference to the calving proportion 
series (2000-2008).  For Southeast Alaska humpback whales, the calving proportion series 
was used in preference to the calf count series (both series 1975-2008).  In the case of 
eastern gray whales, a calving proportion series was constructed by dividing the calf count 
series by the estimated abundance series.  In the case of raw calf count series, the possible 
confounding effect of population trend was allowed for by fitting a trend parameter as 
described below. 

The resulting time series used in this analysis are listed in Table 2.   
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2.2. Observation error and likelihood 

The observation error is presumed to be of Poisson, binomial, normal or lognormal kind 
depending on the series, as listed in Table 2.  Poisson errors are assumed for raw calf 
counts, and binomial errors for directly observed calving proportions.  In the case of the BCB 
bowhead calving proportion series, normal errors with the quoted standard error are 
assumed.  The calving interval data are treated as normally distributed with the empirically 
observed variance of intervals for each data point.  The calculated calving proportions for the 
eastern gray whale are assumed to be lognormally distributed, with the CV calculated from 
the CVs of the calf number and total abundance estimates. 

 

2.3. Modelling of process variance 

The expected value of the data point for series i in year t is assumed to be given by: 

 ( )expit i i itz a b t ε= + +  

where ai, bi are stock-specific intercept and slope parameters.  The slope parameter is 
omitted (set to zero) for all time series except the absolute calf count series.  ai is treated as 
a nuisance parameter that is eliminated by conditioning on the sufficient statistic for ai. 

Two alternative assumptions for the nature of the process variance were considered: 

(i) No serial correlation: the εit are independent normal random variates with mean zero and 
series-specific standard deviation σi,  

(ii) Serial correlation: the εit are normal random variates with mean zero, series-specific 
standard deviation σi, are idependent between series, but are serially correlated over time 
within a series.  The series-specific serial correlation coefficient is denoted by: 

, , 1( , )i t i t iρ ε ε ρ+ = . 

2.4. General approach to Bayesian meta-analysis 

The assumption behind Bayesian meta-analysis (Congdon 2003) is that the value of a given 
parameter for a given stock is drawn from a population of values of that parameter across 
stocks.   

By scrambling (anonymizing) the stock labels, we can justify the assumption that the prior 
distribution of the parameter of interest is the same for each stock.   

If data are collected for a number of stocks, these contribute to knowledge of the distribution 
of the parameter of interest across stocks, and influence our prior expectations of the likely 
value of the parameter for further stocks.  This implies that the prior distributions are not 
independent across stocks. We suppose that the correlation of the priors for a given 
parameters between any pair of distinct stocks is ζ where 0 ≤ ζ ≤ 1. (Note that negative 
mutual correlation between three or more random variables is not possible).   
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The extreme case ζ = 0 corresponds to the case where the priors are independent.  In this 
case, regardless of for how many stocks we have observed the value of the parameter, this 
knowledge would have no influence on our expectation of the value of the parameter for the 
next stock.  Apart from being scientifically unreasonable, this case corresponds to multiple 
single-stock analyses rather than a true meta-aalysis. 

The other extreme case, ζ = 1, corresponds to the assumption that the value of the 
parameter is the same for all stocks.  This would mean that data collected from stock A 
would be as informative about the value of the parameter for stock B as would data collected 
from stock B itself.  Apart from being scientifically unreasonable, this case involves 
estimation of common parameters applicable to all stocks, and is also not a true meta-
analysis. 

Values of ζ that lie strictly between 0 and 1 correspond to a true meta-analysis.   

In the case where the prior distribution for a parameter of is non-normal, it is more 
convenient to let ζ refer to the correlation between the prior distributions after the parameter 
has been transformed to makes its prior normal.  If the cumulative prior distribution for a 
parameter p is F(p), then we apply the transformation p→p* where ( )1* ( )p F p−=Φ  and 1−Φ  

is the inverse of the cumulative normal distribution function.  ζ then refers to the correlation 
between the priors of pi* and pj* for any two distinct stocks i, j. This form of correlation is 
sometimes called the normalized correlation. 

 

2.5. Priors for each parameter  

The unknown parameters for each stock and their assumed priors are:  

σi  :  standard deviation of process error:  prior is uniform on [0,1]. 

ρi : the serial correlation of process error :  prior is uniform on (-1,1)   

bi : trend parameter (for calf counts):  prior is normal N(0,0.1) 

 

The unknown meta-parameters and their priors are: 

ζσ : normalized correlation between priors for σi,  σj i≠j : prior is uniform on (0,1) 

ζρ : normalized correlation between priors for ρi,  ρj i≠j: prior is uniform on (0,1) 

ζb : normalized correlation between priors for bi,  bj i≠j: prior is uniform on (0,1) 

The upper bound on the prior for σi is arbitrary at this stage but as found below is not critical. 
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2.6. Computation of posterior dstributions 

The distributions of interest are the posterior distributions of σ and ρ for a generic stock; that 
is, a stock for which there are no stock-specific data.  We denote the generic stock as stock 0 
and its parameters as ρ0 and σo. 

Because the prior distributions of the stock-specific parameters are correlated across stocks, 
the posterior distribution must be evaluated for all parameters from all stocks jointly.  A 
sample of the joint posterior distribution of all parameters is obtained using an MCMC 
algorithm, with sampling every 100th iteration, and discarding the first half of the chain 
(regardless of chain length) as “burn-in”.   The chain is sampled long enough until the 
posterior distributions are deemed to have converged satisfactorily.   Convergence is 
examined by computing the 10th 50th and 90th percentiles of the posterior distribution 
computed from a rolling subset of the chain: this subset being the most recent 20% of 
iterations at each point.  These percentiles should stabilise when the chain is long enough. 

 

3. RESULTS AND DISCUSSION 
 

3.1. Convergence of the MCMC 

Figs 1a-b show the 10th, 50th and 90th percentiles of the distributions of σ0, ρ0, ξσ and ξρ as a 
function of iteration number for a chain of length 5 million.  As noted above, the percentiles 
are calculated on a rolling basis using the trailing 20% of the chain up to each point.  The 
results suggest that the posterior distributions for σ0 and ρ0 have stabilised after approx. 1 
million iterations. The posterior distributions of ξσ and ξρ are not quite so stable, but appear 
satisfactory for low-precision work, since it is the stability of the distributions of the 
parameters of interest, σ0, ρ0, that is of primary importance.  For the results that follow, a 
chain length of 5 million sampled every 100th iteration was used, with the first half the chain 
being discarded as burn-in. 

3.2. Calf counts/proportions series (batch A) 

Figs 2a-b show the posterior distributions of σ0 and ξσ for the case of no serial correlation (ρ 
= 0). 

Figs 3a-d show, for the case of estimated serial correlation, the posterior distributions of : (a) 
σ0 ; (b) ρ0 ; (c) ξσ ; (d) ξρ.                    

The posterior distribution of σ0 is rather insensitive to whether serial correlation is allowed or 
not. The posterior distribution of σ0 is fairly flat out to σ0 = 0.5, and declines only moderately 
for σ0  > 0.5. The posterior implies that there are no strong grounds to exclude any of the 
range [0,1] except that values near the upper end of the range are slightly less likely. The 
posterior distribution for ρ0. indicates no strong grounds to exclude any values within the 
range (-1,1).  
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3.3. Calving interval series (batch B) 

Figs 4a-b and 5a-d show the same results as in Figs 2-3 but for the calving interval series 
(batch B). The posterior distribution for σ0 is again rather insensitive to whether serial 
correlation is allowed or not. The mode of the posterior is near σ0 = 0.05, and values of σ > 
0.4 are effectively excluded.  The posterior distribution of ρ0 is almost uniform across almost 
the entire range (0,1): this implies that these data are uninformative with respect to ρ0. 

3.4. Discussion  

The lower estimates of σ0 using the calving-interval data may be consistent with higher 
values of σ0 for calf-count or proportion data, because the intervals by definition measure a 
rolling average of rates smeared over a number of consecutive years.  To relate the 
observed variation in calving interval to variation in effective reproductive rate may require 
explicit modelling of the calving cycle and its variation, as done for example by Cooke (2003).  

A further problem with interpreting the calving interval data in this context is that both the 
observation and process variance are estimated empirically from the calving interval data. 
The power to separate the two may be less than for the calf count and proportion data, 
where the variance is either given theoretically (Poisson, binomial) or estimated externally.   

It would appear more appropriate to use the results from the calf count and calf proportion 
data in the first instance.  Based on the posterior distributions of σ0 and ρ0,  there seems little 
reason to change the practice of IWC (2010, Table 2) of using, for simulation purposes, 
values of 0.0, 0.5, and 1.0 as “low”, “medium” and “high” values of σ, and the values 0, 0.5 
and 0.9 for low medium and high values of ρ, noting that values of ρ < 0, if they occur, are 
unproblematic in the sense that they tend to dampen rather than enhance the effect of a 
given level inter-annual variation.   

It should be emphasised that variance in reproductive rates does not translate directly into 
variance in the net recruitment rate, because there may also be variability in mortality rates.  
An important question in that context is whether variations in mortality rates are likely to be 
positively or negatively correlated with variations in reproductive rates (Cooke, 2011). 
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Table 1. Time series of calf numbers, proportions, intervals and asociated data submitted to the 3rd Scientific Committee Workshop on 
baleen whale MSYR  (adapted from IWC 2011, Table 1)
Species Stock Series type 1st year Last year No. Years Notes Data supplier
Blue Gulf of California Calving proportion 1986 2009 18 for known rep. Females Sears/Ramp
Blue Gulf of California Intervals 1990 2005 7
Bowhead Bering/Beaufort/Chuckchi seas Calf proportion 1985 2004 8 as fraction of total stock Koski
Fin Gulf of St Lawrence Calf Count 1983 2009 27
Fin Gulf of St Lawrence Calving proportion 2000 2008 5 for known rep. Females Sears/Ramp
Fin Gulf of St Lawrence Intervals 2007 2008 2
Gray Eastern North Pacific Abundance 1968 2007 23 1+ Laake, Perryman & Brownell
Gray Eastern North Pacific Calf Count 1994 2009 16
Humpback Gulf of Maine Calving proportion 1979 2005 27 for known rep. Females Robbins
Humpback Gulf of Maine Intervals 1984 2005 22
Humpback Gulf of St Lawrence Calving proportion 1983 2009 25 for known rep. Females Sears/Ramp
Humpback Gulf of St Lawrence Intervals 1985 2009 18
Humpback Southeast Alaska Calf Count 1975 2008 34
Humpback Southeast Alaska Calving proportion 1975 2008 34 for known rep. Females Gabrele/Straley
Humpback Southeast Alaska Intervals 1986 2008 23
Humpback US West Coast Abundance 1991 2008 18 total Calambokidis
Right Northwest Atlantic Calf Count 1980 2009 30 Kraus
Right Northwest Atlantic Intervals 1985 2009 25
Right Southeast Atlantic Calf Count 1979 2006 28 Best
Right Southeast Atlantic Intervals 1984 2006 23
Right Southwest Atlantic Calf Count 1971 2008 38 Rowntree
Right Southwest Atlantic Intervals 1977 2008 32
Note: no. of years does not always equal the span of years, because of missing years
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Table 2. Time series used in the analyses

Batch Species Stock Series type
Observation 

error 1st year Last year No. Years Notes
A Gray Eastern North Pacific Calving rate Lognormal 1994 2007 23 Ratio calves to 1+ stock
A Fin Gulf of St Lawrence Calf Count Poisson 1983 2009 27
A Right Northwest Atlantic Calf Count Poisson 1980 2009 30
A Right Southeast Atlantic Calf Count Poisson 1979 2006 28
A Right Southwest Atlantic Calf Count Poisson 1971 2008 38
A Blue Gulf of California Calving proportion Binomial 1986 2009 18 for known rep. Females
A Bowhead Bering/Beaufort/Chuckchi seas Calf proportion Normal 1985 2004 8 as fraction of total stock
A Humpback Gulf of Maine Calving proportion Binomial 1979 2005 27 for known rep. Females
A Humpback Gulf of St Lawrence Calving proportion Binomial 1983 2009 25 for known rep. Females
A Humpback Southeast Alaska Calving proportion Binomial 1975 2008 34 for known rep. Females
B Blue Gulf of California Intervals Normal 1990 2005 7
B Fin Gulf of St Lawrence Intervals Normal 2007 2008 2
B Humpback Gulf of Maine Intervals Normal 1984 2005 22
B Humpback Gulf of St Lawrence Intervals Normal 1985 2009 18
B Humpback Southeast Alaska Intervals Normal 1986 2008 23
B Right Northwest Atlantic Intervals Normal 1985 2009 25
B Right Southeast Atlantic Intervals Normal 1984 2006 23
B Right Southwest Atlantic Intervals Normal 1977 2008 32
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Fig. 4. Posteriors for sigma, zeta(sigma) (calving intervals) (rho = 0)
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